Absorption profile and femtosecond intraband relaxation of the intense upper Davydov component in oligothiophenes
Research output: Contribution to journal › Article › Scientific › peer-review
Details
Original language | English |
---|---|
Pages (from-to) | 412-415 |
Number of pages | 4 |
Journal | Physica Status Solidi B: Basic Solid State Physics |
Volume | 248 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2011 |
Publication type | A1 Journal article-refereed |
Abstract
The diffuse shape of the high-energy absorption band observed in oligothiophene crystals is interpreted in terms of Fano-type mixing between the discrete upper Davydov component at k=0 and the continuum of phonon-accompanied exciton states at other values of crystal momentum. In temporal domain, this mixing is viewed as a crystal version of radiationless transition, and is followed by subsequent intra-band exciton relaxation due to scattering processes with phonon release. The rates of energy dissipation in these latter processes, mediated by different intramolecular vibrational modes, are estimated from a simple expression based on the Fermi golden rule. Depopulation of long-lived vibronic intermediates, acting as bottlenecks, is attributed to thermally activated processes with absorption of low-frequency phonons. All essential input parameters are obtained from independent nonempirical calculations. The results are in excellent agreement both with the experimentally observed absorption band shapes and with energy-dependent femtosecond dynamics afforded by measurements of sexithiophene (6T) fluorescence and photoinduced absorption.
ASJC Scopus subject areas
Keywords
- Femtosecond spectroscopy, Intra-band relaxation, Oligothiophenes