Tampere University of Technology

TUTCRIS Research Portal

An Integrated Hardware/Software Design Methodology for Signal Processing Systems

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)1-19
JournalJournal of Systems Architecture
Volume93
Early online date31 Dec 2018
DOIs
Publication statusPublished - Feb 2019
Publication typeA1 Journal article-refereed

Abstract

This paper presents a new methodology for design and implementation of signal processing systems on system-on-chip (SoC) platforms. The methodology is centered on the use of lightweight application programming interfaces for applying principles of dataflow design at different layers of abstraction. The development processes integrated in our approach are software implementation, hardware implementation, hardware-software co-design, and optimized application mapping. The proposed methodology facilitates development and integration of signal processing hardware and software modules that involve heterogeneous programming languages and platforms. As a demonstration of the proposed design framework, we present a dataflow-based deep neural network (DNN) implementation for vehicle classification that is streamlined for real-time operation on embedded SoC devices. Using the proposed methodology, we apply and integrate a variety of dataflow graph optimizations that are important for efficient mapping of the DNN system into a resource constrained implementation that involves cooperating multicore CPUs and field-programmable gate array subsystems. Through experiments, we demonstrate the flexibility and effectiveness with which different design transformations can be applied and integrated across multiple scales of the targeted computing system.

Keywords

  • Dataflow, Model-based design, Hardware/software co-design, Low power techniques, Deep learning, Signal processing systems

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available