Tampere University of Technology

TUTCRIS Research Portal

An urban cellular automata model for simulating dynamic states on a local scale

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Article number12
JournalEntropy
Volume19
Issue number1
DOIs
Publication statusPublished - 2017
Publication typeA1 Journal article-refereed

Abstract

In complex systems, flexibility and adaptability to changes are crucial to the systems' dynamic stability and evolution. Such resilience requires that the system is able to respond to disturbances by self-organizing, which implies a certain level of entropy within the system. Dynamic states (static, cyclical/periodic, complex, and chaotic) reflect this generative capacity, and correlate with the level of entropy. For planning complex cities, we need to develop methods to guide such autonomous progress in an optimal manner. A classical apparatus, cellular automaton (CA), provides such a tool. Applications of CA help us to study temporal dynamics in self-organizing urban systems. By exploring the dynamic states of the model's dynamics resulting from different border conditions it is possible to discover favorable set(s) of rules conductive to the self-organizing dynamics and enable the system's recovery at the time of crises. Level of entropy is a relevant measurement for evaluation of these dynamic states. The 2-D urban cellular automaton model studied here is based on the microeconomic principle that similar urban activities are attracted to each other, especially in certain self-organizing areas, and that the local dynamics of these enclaves affect the dynamics of the urban region by channeling flows of information, goods and people. The results of the modeling experiment indicate that the border conditions have a major impact on the model's dynamics generating various dynamic states of the system. Most importantly, it seemed that the model could simulate a favorable, complex dynamic state with medium entropy level which may refer to the continuous self-organization of the system. The model provides a tool for exploring and understanding the effects of boundary conditions in the planning process as various scenarios are tested: resulting dynamics of the system can be explored with such "planning rules" prior to decisions, helping to identify planning guidelines that will support the future evolution of these areas.

ASJC Scopus subject areas

Keywords

  • Cellular automaton, Complexity theory, Dynamic states, Entropy, Evolution, Planning, Urban models

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available