Tampere University of Technology

TUTCRIS Research Portal

Automatic detection of carotid arteries in computed tomography angiography: a proof of concept protocol

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
Pages (from-to)1299–1310
JournalInternational Journal of Cardiovascular Imaging
Issue number8
Early online date3 May 2016
Publication statusPublished - Aug 2016
Publication typeA1 Journal article-refereed


Atherosclerosis is one of the leading causes of mortality in the western world. Computed tomography angiography (CTA) is the conventional imaging method used for pre-surgery assessment of the blood flow within the carotid vessel. In this paper, we present a proof of concept of a novel, fast and operator independent protocol for the automatic detection (seeding) of the carotid arteries in CTA in the thorax and upper neck region. The dataset is composed of 14 patients’ CTA images of the neck region. The performance of this method is compared with manual seeding by four trained operators. Inter-operator variation is also assessed based on the dataset. The minimum, average and maximum coefficient of variation among the operators was (0, 2, 5 %), respectively. The performance of our method is comparable with the state of the art alternative, presenting a detection rate of 75 and 71 % for the lowest and uppermost image levels, respectively. The mean processing time is 167 s per patient versus 386 s for manual seeding. There are no significant differences between the manual and automatic seed positions in the volumes (p = 0.29). A fast, operator independent protocol was developed for the automatic detection of carotid arteries in CTA. The results are encouraging and provide the basis for the creation of automatic detection and analysis tools for carotid arteries.

Publication forum classification

Field of science, Statistics Finland