Tampere University of Technology

TUTCRIS Research Portal

Breaking dormancy: An energy-efficient means of recovering astaxanthin from microalgae

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)1226-1234
Number of pages9
JournalGreen Chemistry
Volume17
Issue number2
DOIs
Publication statusPublished - 1 Feb 2015
Publication typeA1 Journal article-refereed

Abstract

Haematococcus pluvialis, in the dormant aplanospore (cyst) status after 30 d of cultivation, accumulates high levels of a superpotent antioxidant, astaxanthin, which has been demonstrated to have enormous therapeutic benefits. However, owing to the robust structure of its trilayered cell wall, the recovery of astaxanthin from the cyst cells remains an energy-intensive process. In the present study, a novel strategy utilizing a short-period germination based on the natural life cycle of H. pluvialis was developed as an energy-efficient pretreatment for the extraction of astaxanthin using ionic liquids (ILs) as green solvents. The germination resulted in damage and deconstruction of the cyst cell wall, and thereby facilitated the extraction of astaxanthin by ILs at room temperature. By this natural pretreatment with 1-ethyl-3-methylimidazolium ethylsulfate for a very short reaction time of 1 min, a high astaxanthin yield of 19.5 pg per cell was obtained, which was about 82% of a conventional volatile organic solvent extraction by strong, 30 000 psi French-pressure-cell homogenization. The maximal astaxanthin-extraction yield from H. pluvialis cells was observed for 12-18 h germination. The germination rate furthermore could be improved by manipulating the nutritional composition (especially the nitrate concentration) of the culture medium. In light of these results, it can be posited that natural germination following the principles of green chemistry can be a uniquely simple method of robust microalgal cyst cell pretreatment and extraction of astaxanthin with roomerature ILs.

ASJC Scopus subject areas