Tampere University of Technology

TUTCRIS Research Portal

Carbon nanotubes-filled thermoplastic polyurethane-urea and carboxylated acrylonitrile butadiene rubber blend nanocomposites

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
JournalJournal of Applied Polymer Science
Issue number11
Publication statusPublished - 5 Jun 2014
Publication typeA1 Journal article-refereed


This article reports the preparation and characterization of multiwalled carbon nanotubes (MWCNTs)-filled thermoplastic polyurethane-urea (TPUU) and carboxylated acrylonitrile butadiene rubber (XNBR) blend nanocomposites. The dispersion of the MWCNTs was carried out using a laboratory two roll mill. Three different loadings, that is, 1, 3, and 5 wt % of the MWCNTs were used. The electron microscopy image analysis proves that the MWCNTs are evenly dispersed along the shear flow direction. Through incorporation of the nanotubes in the blend, the tensile modulus was increased from 9.90 ± 0.5 to 45.30 ± 0.3 MPa, and the tensile strength at break was increased from 25.4 ± 2.5 to 33.0 ± 1.5 MPa. The wide angle X-ray scattering result showed that the TPUU:XNBR blends were arranged in layered structures. These structures are formed through chemical reactions of -NH group from urethane and urea with the carboxylic group on XNBR. Furthermore, even at a very low loading, the high degree of nanotubes dispersion results in a significant increase in the electrical percolation threshold. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40341.


  • blends, elastomers, graphene and fullerenes, nanotubes, polyurethanes, rubber