Tampere University of Technology

TUTCRIS Research Portal

Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)327-343
JournalActa Biomaterialia
DOIs
Publication statusE-pub ahead of print - Nov 2019
Publication typeA1 Journal article-refereed

Abstract

In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human induced pluripotent stem cell (hiPSC)-derived cells. For the first time, hiPSC-derived retinal pigment epithelium (RPE) and endothelial cells (EC) were cultured on opposite sides of porous polylactide substrates prepared by breath figures (BF), where both surfaces had been collagen-coated by Langmuir–Schaefer (LS) technology. Small modifications of casting conditions during material preparation allowed the production of free-standing materials with distinct porosity, wettability and ion diffusion capacity. Complete pore coverage was achieved by the collagen coating procedure, resulting in a detectable nanoscale topography. Primary retinal endothelial cells (ACBRI181) and umbilical cord vein endothelial cells (hUVEC) were utilised as EC references. Mono-cultures of all ECs were prepared for comparison. All tested materials supported cell attachment and growth. In mono-culture, properties of the materials had a major effect on the growth of all ECs. In co-culture, the presence of hiPSC-RPE affected the primary ECs more significantly than hiPSC-EC. In consistency, hiPSC-RPE were also less affected by hiPSC-EC than by the primary ECs. Finally, our results show that the modulation of the porosity of the materials can promote or prevent EC migration.

In short, we showed that the behaviour of the cells is highly dependent on the three main variables of the study: the presence of a second cell type in co-culture, the source of endothelial cells and the biomaterial properties. The combination of BF and LS methodologies is a powerful strategy to develop thin but stable materials enabling cell growth and modulation of cell-cell contact.

Keywords

  • Polylactide, Breath figures, Co-culture, hiPSC-endothelial cells, hiPSC-RPE

Publication forum classification

Field of science, Statistics Finland