Tampere University of Technology

TUTCRIS Research Portal

Constrained PSK: Energy-efficient modulation for Sub-THz systems

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review


Original languageEnglish
Title of host publication2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings
Number of pages7
ISBN (Electronic)9781728174402
ISBN (Print)978-1-7281-7441-9
Publication statusPublished - 2020
Publication typeA4 Article in a conference publication
EventIEEE International Conference on Communications Workshops - Dublin, Ireland
Duration: 7 Jun 202011 Jun 2020

Publication series

NameIEEE/CIC international conference on communications in China - workshops
ISSN (Print)2474-9133
ISSN (Electronic)2474-9141


ConferenceIEEE International Conference on Communications Workshops


Deploying sub-THz frequencies for mobile communications is one timely research area, due to the availability of very wide and contiguous chunks of the radio spectrum. However, at such extremely high frequencies, there are large challenges related to, e.g., phase noise, propagation losses as well as to energy-efficiency, since generating and radiating power with reasonable efficiency is known to be far more difficult than at lower frequencies. To address the energy-efficiency and power amplifier (PA) nonlinear distortion related challenges, modulation methods and waveforms with low peak-to-average-power ratio (PAPR) are needed. To this end, a new modulation approach is formulated and proposed in this paper, referred to as constrained phase-shift keying (CPSK). The CPSK concept builds on the traditional PSK constellations, while additional constraints are applied to the time domain symbol transitions in order to control and reduce the PAPR of the resulting waveform. This new modulation is then compared with pulse-shaped π/2-BPSK and ordinary QPSK, in the discrete Fourier transform (DFT) spread orthogonal frequency division multiplexing (DFT-s-OFDM) context, in terms of the resulting PAPR distributions and the achievable maximum PA output power, subject to constraints in the passband waveform quality and out-of-band emissions. The obtained results show that the proposed CPSK approach allows for reducing the PAPR and thereon for achieving higher PA output powers, compared to QPSK, while still offering the same spectral efficiency. Overall, the CPSK concept offers a flexible modulation solution with controlled PAPR for the future sub-THz networks.


  • 5G New Radio (NR) evolution, DFT-s-OFDM, Energy-efficiency, Modulation, PAPR, Power amplifiers, Sub-THz communications

Publication forum classification