Tampere University of Technology

TUTCRIS Research Portal

Continuous-wave optical parametric oscillators for mid-infrared spectroscopy

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review


Original languageEnglish
Title of host publicationNonlinear Frequency Generation and Conversion
Subtitle of host publicationMaterials and Devices XIX
EditorsPeter G. Schunemann, Kenneth L. Schepler
ISBN (Electronic)9781510632929
ISBN (Print)9781510632912
Publication statusPublished - 2020
Publication typeA4 Article in a conference publication
EventNonlinear Frequency Generation and Conversion: Materials and Devices - San Francisco, United States
Duration: 3 Feb 20205 Feb 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


ConferenceNonlinear Frequency Generation and Conversion: Materials and Devices
CountryUnited States
CitySan Francisco


The atmospheric window at 3 to 5 μm is one of the most important spectral regions for molecular spectroscopy. This region accommodates strong fundamental vibrational spectra of several interesting molecules, including species relevant for air quality monitoring, medical diagnostics, and fundamental research. These applications require excellent spectroscopic sensitivity and selectivity. For example, atmospheric research often needs precise quantification of trace gas fractions of down to the parts-per-trillion level (10-12), with the capability of resolving individual spectral features of different molecular compounds. This sets stringent requirements for the light source of the spectrometer in terms of output power, noise, and linewidth. In addition, the wavelength tuning range of the light source needs to be large, preferably over the entire atmospheric window, in order to enable measurements of molecular fingerprints of several compounds. Continuous-wave optical parametric oscillators (CW-OPOs) are one of the few light sources that have the potential of combining all these favorable characteristics. This contribution summarizes our progress in the development of CW-OPOs, with an emphasis on precise frequency control methods for high-resolution molecular spectroscopy. Examples of new applications enabled by the advanced CW-OPO technologies will be presented. These examples include a demonstration of world-record detection sensitivity in trace gas analysis, as well as the first characterization of infrared spectrum of radioactive methane 14CH4.


  • Infrared spectroscopy, Molecular spectroscopy, Nonlinear optics, Optical frequency conversion

Publication forum classification

Field of science, Statistics Finland