Tampere University of Technology

TUTCRIS Research Portal

Crop yield prediction with deep convolutional neural networks

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
Article number104859
Issue number104859
Publication statusPublished - 2019
Publication typeA1 Journal article-refereed


Using remote sensing and UAVs in smart farming is gaining momentum worldwide. The main objectives are crop and weed detection, biomass evaluation and yield prediction. Evaluating machine learning methods for remote sensing based yield prediction requires availability of yield mapping devices, which are still not very common among farmers. In this study Convolutional Neural Networks (CNNs) – a deep learning methodology showing outstanding performance in image classification tasks – are applied to build a model for crop yield prediction based on NDVI and RGB data acquired from UAVs. The effect of various aspects of the CNN such as selection of the training algorithm, depth of the network, regularization strategy, and tuning of the hyperparameters on the prediction efficiency are tested. Using the Adadelta training algorithm, regularization with early stopping and a CNN with 6 convolutional layers, mean absolute error (MAE) in yield prediction of 484.3 kg/ha and mean absolute percentage error (MAPE) of 8.8% was achieved for data acquired during the early period of the growth season (i.e., in June of 2017, growth phase <25%) with RGB data. When using data acquired later in July and August of 2017 (growth phase >25%), MAE of 624.3 kg/ha (MAPE: 12.6%) was obtained. Significantly, the CNN architecture performed better with RGB data than the NDVI data.

Publication forum classification

Field of science, Statistics Finland