Tampere University of Technology

TUTCRIS Research Portal

Curvatures, graph products and Ricci flatness

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
JournalJOURNAL OF GRAPH THEORY
Publication statusSubmitted - 25 Sep 2019
Publication typeA1 Journal article-refereed

Abstract

In this paper, we compare Ollivier Ricci curvature and Bakry-\'Emery curvature notions on combinatorial graphs and discuss connections to various types of Ricci flatness. We show that non-negativity of Ollivier Ricci curvature implies non-negativity of Bakry-\'Emery curvature under triangle-freeness and an additional in-degree condition. We also provide examples that both conditions of this result are necessary. We investigate relations to graph products and show that Ricci flatness is preserved under all natural products. While non-negativity of both curvatures are preserved under Cartesian products, we show that in the case of strong products, non-negativity of Ollivier Ricci curvature is only preserved for horizontal and vertical edges. We also prove that all distance-regular graphs of girth $4$ attain their maximal possible curvature values.

Keywords

  • math.CO, math.DG