Tampere University of Technology

TUTCRIS Research Portal

Deep Learning for Audio Signal Processing

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)206-219
Number of pages14
JournalIEEE Journal on Selected Topics in Signal Processing
Volume13
Issue number2
DOIs
Publication statusPublished - 1 May 2019
Publication typeA1 Journal article-refereed

Abstract

Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.

Keywords

  • audio enhancement, automatic speech recognition, connectionist temporal memory, Deep learning, environmental sounds, music information retrieval, source separation

Publication forum classification

Field of science, Statistics Finland