Tampere University of Technology

TUTCRIS Research Portal

Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
Pages (from-to)19048–19056
Number of pages9
JournalACS Applied Materials & Interfaces
Issue number22
Early online date18 May 2017
Publication statusPublished - 2017
Publication typeA1 Journal article-refereed


Some bacterial strains such as Komagataeibacter xylinus are able to produce cellulose as an extracellular matrix. In comparison to wood-based cellulose, bacterial cellulose (BC) holds interesting properties such as biodegradability, high purity, water-holding capacity, and superior mechanical and structural properties. Aiming toward improvement in BC production titer and tailored alterations to the BC film, we engineered K. xylinus to overexpress partial and complete bacterial cellulose synthase operon that encodes activities for BC production. The changes in cell growth, end metabolite, and BC production titers from the engineered strains were compared with the wild-type K. xylinus. Although there were no significant differences between the growth of wild-type and engineered strains, the engineered K. xylinus strains demonstrated faster BC production, generating 2–4-fold higher production titer (the highest observed titer was obtained with K. xylinus-bcsABCD strain producing 4.3 ± 0.46 g/L BC in 4 days). The mechanical and structural characteristics of cellulose produced from the wild-type and engineered K. xylinus strains were analyzed with a stylus profilometer, in-house built tensile strength measurement system, a scanning electron microscope, and an X-ray diffractometer. Results from the profilometer indicated that the engineered K. xylinus strains produced thicker BC films (wild type, 5.1 μm, and engineered K. xylinus strains, 6.2–10.2 μm). Scanning electron microscope revealed no principal differences in the structure of the different type BC films. The crystallinity index of all films was high (from 88.6 to 97.5%). All BC films showed significant piezoelectric response (5.0–20 pC/N), indicating BC as a promising sensor material.

Downloads statistics

No data available