TY - JOUR
T1 - Experimental realization of wave-packet dynamics in cyclic quantum walks
AU - Nejadsattari, Farshad
AU - Zhang, Yingwen
AU - Bouchard, Frédéric
AU - Larocque, Hugo
AU - Sit, Alicia
AU - Cohen, Eliahu
AU - Fickler, Robert
AU - Karimi, Ebrahim
PY - 2019/2/20
Y1 - 2019/2/20
N2 - Quantum walks present novel tools for redesigning quantum algorithms, universal quantum computations, and quantum simulators. Hitherto, one- and two-dimensional quantum systems (lattices) have been simulated and studied with photonic systems. Here, we report the photonic simulation of cyclic quantum systems, such as hexagonal structures. We experimentally explore the wavefunction dynamics and probability distribution of a quantum particle located on a six-site system, along with three- and four-site systems while under different initial conditions. Various quantum walk systems employing Hadamard, C-NOT, and Pauli-Z gates are experimentally simulated, where we find configurations capable of simulating particle transport and probability density localization. Our technique can potentially be integrated into small-scale structures using microfabrication, and thus would open a venue towards simulating more complicated quantum systems comprised of cyclic structures.
AB - Quantum walks present novel tools for redesigning quantum algorithms, universal quantum computations, and quantum simulators. Hitherto, one- and two-dimensional quantum systems (lattices) have been simulated and studied with photonic systems. Here, we report the photonic simulation of cyclic quantum systems, such as hexagonal structures. We experimentally explore the wavefunction dynamics and probability distribution of a quantum particle located on a six-site system, along with three- and four-site systems while under different initial conditions. Various quantum walk systems employing Hadamard, C-NOT, and Pauli-Z gates are experimentally simulated, where we find configurations capable of simulating particle transport and probability density localization. Our technique can potentially be integrated into small-scale structures using microfabrication, and thus would open a venue towards simulating more complicated quantum systems comprised of cyclic structures.
UR - http://www.scopus.com/inward/record.url?scp=85063372591&partnerID=8YFLogxK
U2 - 10.1364/OPTICA.6.000174
DO - 10.1364/OPTICA.6.000174
M3 - Article
VL - 6
SP - 174
EP - 180
JO - Optica
JF - Optica
SN - 2334-2536
IS - 2
ER -