Tampere University of Technology

TUTCRIS Research Portal

Fire-safe and environmentally friendly nanocomposites based on layered double hydroxides and ethylene propylene diene elastomer

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
Pages (from-to)26425-26436
Number of pages12
JournalRSC Advances
Issue number31
Publication statusPublished - 2016
Publication typeA1 Journal article-refereed


In this work we describe layered double hydroxide (LDH), known as naturally occurring hydrotalcite, based rubber composites that can serve as outstanding fire retardant elastomeric materials. The preparation and detailed characterization of these composites are presented in this study. The inherent slow sulfur cure nature of EPDM rubber is considerably improved by the addition of LDH as realised by the observation of a shortening of the vulcanization time and an improvement of ultimate rheometric torque. This behavior of LDH signifies not only the filler-like character of itself, but also offers vulcanization active surface properties of layered double hydroxide particles. A good rubber-filler interaction was also realised by observing a positive shift of the glass transition temperature of ethylene propylene diene rubber (EPDM) in dynamic mechanical analysis (DMA). The flame retardant property was studied by the cone calorimeter test. The cone calorimeter investigation with sulfur cured gum rubber compounds found a peak heat release rate (PHRR) value of 654 kW m-2. However, at a higher phr loading of Zn-Al LDH i.e., at 40 phr and 100 phr, the PHRR is diminished to 311 kW m-2 and 161 kW m-2, respectively. Thus, this present work can pave the way to fabricate environmentally friendly fire retardant elastomeric composites for various applications.

Publication forum classification

Field of science, Statistics Finland