Tampere University of Technology

TUTCRIS Research Portal

First principles prediction of the solar cell efficiency of chalcopyrite materials AgMX 2 (M=In, Al; X=S, Se, Te)

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Article numbere00391
JournalComputational Condensed Matter
Volume21
DOIs
Publication statusPublished - 1 Dec 2019
Publication typeA1 Journal article-refereed

Abstract

Using the spectroscopic limited maximum efficiency, and Shockley and Queisser predictor models, we compute the solar efficiency of the chalcopyrites AgMX 2 (M = In, Al; X = S, Se, Te). The results presented are based on the estimation of the electronic and optical properties obtained from first principles density functional theory as well as the many-body perturbation theory calculations. The results from this report were consistent with the experimental data.The optical bandgap was accurately estimated from the absorption spectra, obtained by solving the Bethe and Salpeter equation. Fitting the Tauc's plot on the absorption spectra, we also predicted that the materials studied have a direct allowed optical transition. The theoretical estimations of the solar cell performance showed that the efficiencies from the Shockley and Queisser model are higher than those from the spectroscopic limited maximum efficiency model. This improvement is attributed to the absorption, the recombination processes and the optical transition accounted in the calculation of the efficiency.

Keywords

  • Chalcopyrites, First principles, Solar cell efficiency

Publication forum classification

Field of science, Statistics Finland