Tampere University of Technology

TUTCRIS Research Portal

High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)103-109
JournalOptics Communications
Volume404
DOIs
Publication statusPublished - 2017
Publication typeA1 Journal article-refereed

Abstract

One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

Keywords

  • Coded apertures, Compressive sensing, Computed tomography, Super-resolution

Publication forum classification

Field of science, Statistics Finland