Tampere University of Technology

TUTCRIS Research Portal

Identifying Cover Songs Using Information-Theoretic Measures of Similarity

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)993-1005
Number of pages13
JournalIeee-Acm transactions on audio speech and language processing
Volume23
Issue number6
DOIs
Publication statusPublished - Jun 2015
Publication typeA1 Journal article-refereed

Abstract

This paper investigates methods for quantifying similarity between audio signals, specifically for the task of cover song detection. We consider an information-theoretic approach, where we compute pairwise measures of predictability between time series. We compare discrete-valued approaches operating on quantized audio features, to continuous-valued approaches. In the discrete case, we propose a method for computing the normalized compression distance, where we account for correlation between time series. In the continuous case, we propose to compute information-based measures of similarity as statistics of the prediction error between time series. We evaluate our methods on two cover song identification tasks using a data set comprised of 300 Jazz standards and using the Million Song Dataset. For both datasets, we observe that continuous-valued approaches outperform discrete-valued approaches. We consider approaches to estimating the normalized compression distance (NCD) based on string compression and prediction, where we observe that our proposed normalized compression distance with alignment (NCDA) improves average performance over NCD, for sequential compression algorithms. Finally, we demonstrate that continuous-valued distances may be combined to improve performance with respect to baseline approaches. Using a large-scale filter-and-refine approach, we demonstrate state-of-the-art performance for cover song identification using the Million Song Dataset.

Keywords

  • Audio similarity measures, cover song identification, normalized compression distance, time series prediction, INDIVIDUAL SEQUENCES, DATA-COMPRESSION, BEAT TRACKING, MUSIC, CLASSIFICATION, IDENTIFICATION, PREDICTION, RETRIEVAL, FEATURES, ENTROPY

Publication forum classification

Field of science, Statistics Finland