Tampere University of Technology

TUTCRIS Research Portal

Investigating Root Causes of Railway Track Geometry Deterioration – A Data Mining Approach

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Number of pages11
JournalFrontiers in Built Environment
Volume6
Issue number122
DOIs
Publication statusPublished - 3 Aug 2020
Publication typeA1 Journal article-refereed

Abstract

Railway track geometry deterioration indicates degradation in the underlying track structures. Monitoring and predicting this behavior are important as is investigating the root causes contributing to the deterioration. Without knowing the causes, assigned remediation might not result in a long-lasting correction. However, there is little research regarding the pragmatic aspects of investigating the root causes of track geometry deterioration utilizing real-world data sources. For this purpose, a new method was explored. After reviewing methodologies, the chosen approach was an association rule data mining method: General Unary Hypotheses Automaton (GUHA). The initial data used in data mining comprise data from asset management and multiple measurement systems, including a track geometry measurement vehicle, a track stiffness measurement device, ground penetrating radar, and lidar. The results of the GUHA data mining are hypotheses based on the initial data and can be used to indicate the most common and uncommon types of structures regarding their track geometry deterioration behavior and the attributes governing the behavior of a certain structure type. Therefore, the GUHA method was found to be a suitable method for investigating the root causes of track geometry deterioration from comprehensive railway track structure data.

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available