Tampere University of Technology

TUTCRIS Research Portal

Mechanisms of acceleration and retardation of water dynamics by ions

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)11824-11831
Number of pages8
JournalJournal of the American Chemical Society
Volume135
Issue number32
DOIs
Publication statusPublished - 14 Aug 2013
Publication typeA1 Journal article-refereed

Abstract

There are fundamental and not yet fully resolved questions concerning the impact of solutes, ions in particular, on the structure and dynamics of water, which can be formulated as follows: Are the effects of ions local or long-ranged? Is the action of cations and anions on water cooperative or not? Here, we investigate how the reorientation and hydrogen-bond dynamics of water are affected by ions in dilute and concentrated aqueous salt solutions. By combining simulations and analytic modeling, we first show that ions have a short-ranged influence on the reorientation of individual water molecules and that depending on their interaction strength with water, they may accelerate or slow down water dynamics. A simple additive picture combining the effects of the cations and anions is found to provide a good description in dilute solutions. In concentrated solutions, we show that the average water reorientation time ceases to scale linearly with salt concentration due to overlapping hydration shells and structural rearrangements which reduce the translational displacements induced by hydrogen-bond switches and increase the solution viscosity. This effect is not ion-specific and explains why all concentrated salt solutions slow down water dynamics. Our picture, which is demonstrated to be robust vis-a-vis a change in the force-field, reconciles the seemingly contradictory experimental results obtained by ultrafast infrared and NMR spectroscopies, and suggests that there are no long-ranged cooperative ion effects on the dynamics of individual water molecules in dilute solutions.