Tampere University of Technology

TUTCRIS Research Portal

Multimodal Video Analysis and Modeling

Research output: Book/ReportDoctoral thesisCollection of Articles

Details

Original languageEnglish
PublisherTampere University of Technology
Number of pages69
ISBN (Electronic)978-952-15-3888-9
ISBN (Print)978-952-15-3845-2
Publication statusPublished - 18 Nov 2016
Publication typeG5 Doctoral dissertation (article)

Publication series

NameTampere University of Technology. Publication
Volume1433
ISSN (Print)1459-2045

Abstract

From recalling long forgotten experiences based on a familiar scent or on a piece of music, to lip reading aided conversation in noisy environments or travel sickness caused by mismatch of the signals from vision and the vestibular system, the human perception manifests countless examples of subtle and effortless joint adoption of the multiple senses provided to us by evolution. Emulating such multisensory (or multimodal, i.e., comprising multiple types of input modes or modalities) processing computationally offers tools for more effective, efficient, or robust accomplishment of many multimedia tasks using evidence from the multiple input modalities. Information from the modalities can also be analyzed for patterns and connections across them, opening up interesting applications not feasible with a single modality, such as prediction of some aspects of one modality based on another. In this dissertation, multimodal analysis techniques are applied to selected video tasks with accompanying modalities. More specifically, all the tasks involve some type of analysis of videos recorded by non-professional videographers using mobile devices.

Fusion of information from multiple modalities is applied to recording environment classification from video and audio as well as to sport type classification from a set of multi-device videos, corresponding audio, and recording device motion sensor data. The environment classification combines support vector machine (SVM) classifiers trained on various global visual low-level features with audio event histogram based environment classification using k nearest neighbors (k-NN). Rule-based fusion schemes with genetic algorithm (GA)-optimized modality weights are compared to training a SVM classifier to perform the multimodal fusion. A comprehensive selection of fusion strategies is compared for the task of classifying the sport type of a set of recordings from a common event. These include fusion prior to, simultaneously with, and after classification; various approaches for using modality quality estimates; and fusing soft confidence scores as well as crisp single-class predictions. Additionally, different strategies are examined for aggregating the decisions of single videos to a collective prediction from the set of videos recorded concurrently with multiple devices. In both tasks multimodal analysis shows clear advantage over separate classification of the modalities.

Another part of the work investigates cross-modal pattern analysis and audio-based video editing. This study examines the feasibility of automatically timing shot cuts of multi-camera concert recordings according to music-related cutting patterns learnt from professional concert videos. Cut timing is a crucial part of automated creation of multicamera mashups, where shots from multiple recording devices from a common event are alternated with the aim at mimicing a professionally produced video. In the framework, separate statistical models are formed for typical patterns of beat-quantized cuts in short segments, differences in beats between consecutive cuts, and relative deviation of cuts from exact beat times. Based on music meter and audio change point analysis of a new recording, the models can be used for synthesizing cut times. In a user study the proposed framework clearly outperforms a baseline automatic method with comparably advanced audio analysis and wins 48.2 % of comparisons against hand-edited videos.

Field of science, Statistics Finland

Downloads statistics

No data available