Tampere University of Technology

TUTCRIS Research Portal

Named Entity Recognition and Relation Detection for Biomedical Information Extraction

Research output: Contribution to journalReview ArticleScientificpeer-review


Original languageEnglish
Article number673
Number of pages26
JournalFrontiers in cell and developmental biology
Publication statusPublished - 28 Aug 2020
Publication typeA2 Review article in a scientific journal


The number of scientific publications in the literature is steadily growing, containing our knowledge in the biomedical, health, and clinical sciences. Since there is currently no automatic archiving of the obtained results, much of this information remains buried in textual details not readily available for further usage or analysis. For this reason, natural language processing (NLP) and text mining methods are used for information extraction from such publications. In this paper, we review practices for Named Entity Recognition (NER) and Relation Detection (RD), allowing, e.g., to identify interactions between proteins and drugs or genes and diseases. This information can be integrated into networks to summarize large-scale details on a particular biomedical or clinical problem, which is then amenable for easy data management and further analysis. Furthermore, we survey novel deep learning methods that have recently been introduced for such tasks.

ASJC Scopus subject areas


  • artificial intelligence, deep learning, information extraction, named entity recognition, natural language processing, relation detection, text analytics, text mining

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available