Tampere University of Technology

TUTCRIS Research Portal

Optical projection tomography imaging of single cells in 3D gellan gum hydrogel

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Details

Original languageEnglish
Title of host publicationEMBEC and NBC 2017 - Joint Conference of the European Medical and Biological Engineering Conference EMBEC 2017 and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2017
PublisherSpringer Verlag
Pages996-999
Number of pages4
ISBN (Print)9789811051210
DOIs
Publication statusPublished - 2018
Publication typeA4 Article in a conference publication
EventJoint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC) -
Duration: 1 Jan 1900 → …

Publication series

NameIFMBE Proceedings
Volume65
ISSN (Print)1680-0737

Conference

ConferenceJoint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC)
Period1/01/00 → …

Abstract

3D cell culturing has become attractive in biology and tissue engineering laboratories as it mimics the natural environment for the cells to grow, differentiate and interact in all directions. To study cells and cellular interactions within 3D, cell culture requires a non-invasive, non-toxic, and high resolution imaging technique. The existing imaging techniques face challenges to image cells in 3D macro-scale environment because of the sample size, photo-bleaching or resolution requirements. Optical projection tomography (OPT) is a non-invasive 3D imaging technique for samples in the range of 1-10 mm. It works in both emission and transmission modes for fluorescence and bright-field imaging, respectively. Here, we demonstrate the use of OPT for imaging of cells and cellular materials in 3D gellan gum hydrogel. Fluorescence projection images showed alive and dead human lung fibroblast cells encapsulated in hydrogel. The mineralized extracellular matrix secreted by the human adipose stem cells in the hydrogel was evenly distributed throughout the sample and analyzable in 3D volume.

ASJC Scopus subject areas

Keywords

  • 3D imaging, Fluorescence, Hydrogel, Mesenchymal cell culture, Optical projection tomography

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available