Tampere University of Technology

TUTCRIS Research Portal

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)417–430
Number of pages14
JournalJournal of Signal Processing Systems
Volume89
Issue number3
Early online date27 Feb 2017
DOIs
Publication statusPublished - 2017
Publication typeA1 Journal article-refereed

Abstract

Digital predistortion (DPD) is a widely adopted baseband processing technique in current radio transmitters. While DPD can effectively suppress unwanted spurious spectrum emissions stemming from imperfections of analog RF and baseband electronics, it also introduces extra processing complexity and poses challenges on efficient and flexible implementations, especially for mobile cellular transmitters, considering their limited computing power compared to basestations. In this paper, we present high data rate implementations of broadband DPD on modern embedded processors, such as mobile GPU and multicore CPU, by taking advantage of emerging parallel computing techniques for exploiting their computing resources. We further verify the suppression effect of DPD experimentally on real radio hardware platforms. Performance evaluation results of our DPD design demonstrate the high efficacy of modern general purpose mobile processors on accelerating DPD processing for a mobile transmitter.

Keywords

  • CUDA, Digital predistortion, Mobile SoC, NEON SIMD, Software-defined radio

Publication forum classification