Tampere University of Technology

TUTCRIS Research Portal

Perceptual dominant color extraction by multidimensional particle swarm optimization

Research output: Contribution to journalArticleScientificpeer-review


Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalEurasip Journal on Advances in Signal Processing
Issue number451638
Publication statusPublished - 2009
Publication typeA1 Journal article-refereed


Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multidimensional (MD) PSO can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address this problem we then apply Fractional Global Best Formation (FGBF) technique. In order to extract perceptually important colors and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space is proposed. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.

Publication forum classification

Field of science, Statistics Finland