Tampere University of Technology

TUTCRIS Research Portal

Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Article number122115
JournalBioresource Technology
Volume294
DOIs
Publication statusPublished - 1 Dec 2019
Publication typeA1 Journal article-refereed

Abstract

The microbial communities developed from a mixed-species culture in up-flow and flow-through configurations of thermophilic (55 °C) microbial fuel cells (MFCs), and their power production from acetate, were investigated. The up-flow MFC was operated for 202 days, obtaining an average power density of 0.13 W/m3, and Tepidiphilus was the dominant transcriptionally-active microorganisms. The planktonic community developed in the up-flow MFC was used to inoculate a flow-through MFC resulting in the proliferation of Ureibacillus, whose relative abundance increased from 1 to 61% after 45 days. Despite the differences between the up-flow and flow-through MFCs, including the anode electrode, hydrodynamic conditions, and the predominant microorganism, similar (p = 0.05) volumetric power (0.11–0.13 W/m3), coulombic efficiency (16–18%) and acetate consumption rates (55–69 mg/L/d) were obtained from both. This suggests that though MFC design can shape the active component of the thermophilic microbial community, the consortia are resilient and can maintain similar performance in different MFC configurations.

Keywords

  • Attached community, Bioelectrochemical system, Electrogenic microorganisms, MFC, Microbial electrochemical technology, Planktonic community

Publication forum classification

Field of science, Statistics Finland