Tampere University of Technology

TUTCRIS Research Portal

Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)128–141
JournalNeuroImage
Volume144
Issue numberA
DOIs
Publication statusPublished - 2017
Publication typeA1 Journal article-refereed

Abstract

Machine learning approaches have been widely used for the identification of neuropathology from neuroimaging data. However, these approaches require large samples and suffer from the challenges associated with multi-site, multi-protocol data. We propose a novel approach to address these challenges, and demonstrate its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database. We predict symptom severity based on cortical thickness measurements from 156 individuals with autism spectrum disorder (ASD) from four different sites. The proposed approach consists of two main stages: a domain adaptation stage using partial least squares regression to maximize the consistency of imaging data across sites; and a learning stage combining support vector regression for regional prediction of severity with elastic-net penalized linear regression for integrating regional predictions into a whole-brain severity prediction. The proposed method performed markedly better than simpler alternatives, better with multi-site than single-site data, and resulted in a considerably higher cross-validated correlation score than has previously been reported in the literature for multi-site data. This demonstration of the utility of the proposed approach for detecting structural brain abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset indicates the potential of designing machine learning methods to meet the challenges of agglomerative data.

ASJC Scopus subject areas

Keywords

  • Autism spectrum disorder, Cortical thickness, Domain adaptation, Machine learning, Magnetic resonance imaging

Publication forum classification

Field of science, Statistics Finland