Tampere University of Technology

TUTCRIS Research Portal

Printed Elastronics for Wireless Wearable Electronics

Research output: Other conference contributionPaper, poster or abstractScientific

Details

Original languageEnglish
Publication statusPublished - Dec 2019
Publication typeNot Eligible
EventInternational Conference of Polymeric and Organic Materials in Yamagata University - Yonezawa, Japan
Duration: 17 Dec 201920 Dec 2019
Conference number: 2
http://ipomy.yz.yamagata-u.ac.jp/2nd/

Conference

ConferenceInternational Conference of Polymeric and Organic Materials in Yamagata University
Abbreviated titleIPOMY
CountryJapan
CityYonezawa
Period17/12/1920/12/19
Internet address

Abstract

Quantified self-tools and eHealth services based on the Internet-of-Things (IoT) and big-data analyses have a great potential. In these kind of systems, wearable wireless sensor nodes are used to measure different physiological parameters and activities like movement, pressure wave, muscle activity, heart activity, body temperature, etc. The key elements for such a development are: 1) cloud computing, big-data analyses, and development of new health markers, and 2) development of unobtrusive cost-effective sensor nodes. This presentation focuses on the latter by presenting an intelligent, conformable, user friendly physiological monitoring platform for continual nonintrusive wireless monitoring. To reach the full potential of wearables, electronics hardware must become soft, light-weight, thin, conformable to the body and, especially, inexpensive to manufacture. The proposed approach is based on low-cost printing processes enabling the wider exploitation of the results, i.e. affordable disposable sensors and e-textiles. Printing elastronic (elastic electronic) components like antennas, interconnects, electrodes, temperature sensors, and pressure sensors on low-cost soft and biocompatible substrates, like thermoplastic polyurethane (TPU), enables continuous (24/7) monitoring. This presentation will focus on utilization of inkjet and screen printing technologies in wireless wearable elastronics fabrication.