Tampere University of Technology

TUTCRIS Research Portal

Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox state

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)12899-12907
Number of pages9
JournalPhysical Chemistry Chemical Physics
Volume17
Issue number19
DOIs
Publication statusPublished - 2015
Publication typeA1 Journal article-refereed

Abstract

Pt/alpha-Fe2O3 nanocomposites were synthesized on fluorine-doped tin oxide (FTO) substrates by a sequential plasma enhanced-chemical vapor deposition (PE-CVD)/radio frequency (RF) sputtering approach, tailoring the overall Pt content as a function of sputtering time. The chemico-physical properties of the as-prepared systems were extensively investigated by means of complementary techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy, and compared to those of the homologous Pt/alpha-Fe2O3 systems annealed in air prior and/or after sputtering. The obtained results evidenced that the material compositional, structural and morphological features, with particular regard to the Pt oxidation state and hematite nano-organization, could be finely tailored as a function of the adopted processing conditions. Pt/alpha-Fe2O3 systems were finally tested as photoanodes in photoelectrochemical (PEC) water splitting experiments, evidencing a remarkable interplay between functional performances and the above-mentioned material properties, as also testified by transient absorption spectroscopy (TAS) results.

Keywords

  • ALPHA-FE2O3 THIN-FILMS, PHOTOELECTROCHEMICAL PERFORMANCE, NANOSTRUCTURED ALPHA-FE2O3, HYDROTHERMAL METHOD, WATER OXIDATION

Publication forum classification

Downloads statistics

No data available