A beam of variable-energy positrons, whose back-diffusion probability is measured as a function of positron implantation energy, is applied to studies of depth distribution of sputtering damage in aluminum. The defects are produced by argon ion bombardment of an Al(110) surface in ultra-high vacuum. We have varied the Ar+ energy, incident angle and dose, as well as sputtering and annealing temperatures. The extracted defect profiles have typically a narrow peak at the surface with a width of 10-20 A and a broader tail extending down to 50-100 Å. The shape of the defect profile varies only slightly with the sputtering energy and angle. Defect production at less than 1 keV Ar+ energies is typically 1-5 vacancies per incident ion. The defect profiles become fluence-independent at about 2 × 1016 Ar+ cm-2. The defect density at the outer atomic layers saturates at high argon fluences to a few at%, depending on sputtering conditions. The sputtering temperature (below or above the vacancy migration stage at 250 K) has little effect on vacancy profiles. Defects anneal out gradually between 100 °C and 400 °C. Sputtering damage was also evaluated with the molecular dynamics technique. The shape and depth scale of the simulated collision cascades are in agreement with the experimentally extracted quantities.
Research output: Contribution to journal › Article › Scientific › peer-review
Research output: Contribution to journal › Editorial › Scientific
Chemical inhomogenities due to dendritic solidification of Ni-based superalloys result in different local microstructures with varying mechanical properties. New indentation creep test methods allow probing of the local creep properties at the dendrite scale at high temperatures. The as-cast single crystalline Ni-based superalloy ERBO1A (a derivative alloy of CMSX–4) was investigated and electron-probe microanalysis (EPMA) measurements revealed strong segregation of, e.g., Re and W in the dendritic region and, e.g., Ta in the interdendritic region. Indentation creep experiments at 750 °C and micropillar compression tests at 785 °C were conducted in both regions, and a higher creep strength was found in the dendritic region compared to the interdendritic region. Theoretical models for solid solution hardening as well as γ′ precipitation hardening confirm these results, since they predict a higher strength in the dendritic region than in the interdendritic region. Compared with the fully heat treated state, a smaller difference in the local mechanical properties or even a reverse strength ratio of the dendritic and interdendritic region can be expected.
JUFOID=86210
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Plasma sprayed chromia coatings are known to have excellent corrosion and wear properties in highly acidic conditions at ambient and elevated temperatures. In applications requiring extremely good corrosion resistance, the whole components are usually made of a corrosion resistant alloy. For increased adhesion of the ceramic coating to the corrosion resistant substrate material, thermally sprayed metallic bond coatings are used. It is well known that the corrosion environment in such bond coatings between the ceramic top coating and the substrate can be extremely difficult due to the absence of dissolved oxygen, increased concentration of the corrosive electrolytes under the top coating, and galvanic and crevice corrosion mechanisms inside the coating structure. When bond coatings are used, it is of high importance to select the bond layer chemistry and method of production so that the bond coating can survive in such harsh conditions. In the present study, four different bond coatings were studied to evaluate their performance in corrosive acidic electrolytes. The coatings studied were HVOF sprayed Ni-20Cr, Hastelloy C-276 and Ultimet alloy coatings, and plasma sprayed tantalum coating. The substrate material was a solid Hastelloy C-276 metal alloy. The top coating used was plasma sprayed Cr2O3. Corrosion properties of various coating types were studied by electrochemical measurements in sulfuric acid solutions with various concentrations at RT, and by immersion tests at RT and at the temperature of 60°C. The coating microstructures were studied before and after the corrosion tests. The results showed that HVOF sprayed Ni-20Cr and Ultimet alloy coatings were significantly attacked by the sulfuric acid electrolyte, whereas HVOF sprayed Hastelloy C-276 and plasma sprayed Ta coatings performed significantly better.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Process time in air gap region is one of the most important variables in the coating property development, when the molten polymer is moving from the die exit into the nip region in extrusion coating. Coating property evolvement of different LDPE grades are presented in the paper. The importance of the throughput rate and line speed to the process times is discussed by considering the effect of molecular structure of different polyolefins. The draw down ratio based on the grammage measurements is proposed to use in the practical situations.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
ORG=mol,0.5
ORG=fys,0.5
EXT="Tuominen, Mikko"
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Complexity in dynamics and mechanism of supersonic flame formation and effects of processing variables has made the understanding of interaction of particles and flame a difficult task. Lack of such understanding limits the possibilities of controlling the process to obtain desired in-flight particles temperature and velocity and consequent particles state. This problem is even more pronounced in TS systems with no dedicated decoupled temperature and velocity controlled regime. Different approaches based on total volume flow, back pressure and fuel to oxygen ratio have been examined to address the robustness of each approach to control the temperature and velocity. WC-CoCr material was used employing DJ-2600 torch. A guideline to control the in-flight particles temperature and velocity based on process variables is provided. A process map was developed to establish a correlation between process, in-flight particles state, microstructure, properties and performance.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
Thermal spraying is a group of methods which are used to produce for example wear and corrosion resistant coatings on different surfaces. Fine powder of material is fed to high temperature gas flow. The particles accelerate, partially melt and hit to the surface to form a coating. Thermal spraying sets some requirements for the powder. The powder should be able to be fed with constant feed rate and the particle size distribution should be quite narrow to achieve even melt fraction of the particles. For metal alloys gas atomization is the optimum method to produce thermal spray powders. In this paper, results of some powders prepared by laboratory scale medium/high pressure gas atomizer are discussed. Motivation of this work was to study if thermal spray powders could be atomized in suitable particle size without major post processing. Copper and different stainless steels were atomized. Characterization of particle size and morphology were tested. Different aspects of atomization and post processing to increase thermal spray powder quality are discussed.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Scientific › peer-review
This review article highlights and summarizes the recent developments in the field of surface modification methods for aramid fibers. Special focus is on methods that create a multifunctional fiber surface by incorporating nanostructures and enabling mechanical interlocking. To give a complete picture of adhesion promotion with aramids, the specific questions related to the challenges in aramid-matrix bonding are also shortly presented. The main discussion of the surface modification approaches is divided into sections according to how material is added to the fiber surface; (1) coating, (2) grafting and (3) growing. To provide a comprehensive view of the most recent developments in the field, other methods with similar outcomes, are also shortly reviewed. To conclude, future trends and insights are discussed.
Research output: Contribution to journal › Review Article › Scientific › peer-review
Noncovalent binding of azobenzenes to polymers allows harnessing light-induced molecular-level motions (photoisomerization) for inducing macroscopic effects, including photocontrol over molecular alignment and self-assembly of block copolymer nanostructures, and photoinduced surface patterning of polymeric thin films. In the last 10 years, a growing body of literature has proven the utility of supramolecular materials design for establishing structure-property-function guidelines for photoresponsive azobenzene-based polymeric materials. In general, the bond type and strength, engineered by the choice of the polymer and the azobenzene, influence the photophysical properties and the optical response of the material system. Herein, we review this progress, and critically assess the advantages and disadvantages of the three most commonly used supramolecular design strategies: hydrogen, halogen and ionic bonding. The ease and versatility of the design of these photoresponsive materials makes a compelling case for a paradigm shift from covalently-functionalized side-chain polymers to supramolecular polymer-azobenzene complexes.
Research output: Contribution to journal › Review Article › Scientific › peer-review
This feature article focuses on the highlights in the development of photonic polymer coatings that can change their volume or surface topology in a reversible, dynamic fashion when exposed to an external stimulus. Topographic response is established using hydrogels or liquid crystal polymer networks. By changing the surface corrugation in response to light various functional coating properties can be modulated, for instance wettability and/or mechanical friction. The same volume changes in photonic coatings caused by different stimuli lead to changes in light reflection.
EXT="Stumpel, Jelle"
Research output: Contribution to journal › Review Article › Scientific › peer-review
Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.
Research output: Contribution to journal › Review Article › Scientific › peer-review
Protective coatings are needed for metallic interconnects used in solid oxide fuel cell (SOFC) stacks to prevent excessive high-temperature oxidation and evaporation of chromium species. These phenomena affect the lifetime of the stacks by increasing the area-specific resistance (ASR) and poisoning of the cathode. Protective MnCo2O4 and MnCo1.8Fe 0.2O4 coatings were applied on ferritic steel interconnect material (Crofer 22 APU) by high velocity oxy fuel spraying. The substrate-coating systems were tested in long-term exposure tests to investigate their high-temperature oxidation behavior. Additionally, the ASRs were measured at 700 C for 1000 h. Finally, a real coated interconnect was used in a SOFC single-cell stack for 6000 h. Post-mortem analysis was carried out with scanning electron microscopy. The deposited coatings reduced significantly the oxidation of the metal, exhibited low and stable ASR and reduced effectively the migration of chromium.
Research output: Contribution to journal › Review Article › Scientific › peer-review
Heat exchanger surfaces of waste to energy and biomass power plant boilers experience often severe corrosion due to very aggressive components in the used fuels. High velocity oxy-fuel (HVOF) coatings offer excellent protection for boiler tubes against high temperature corrosion due to their high density and good adherence to the substrate material. Several thermal spray coatings with high chromium content were sprayed with HVOF technique. Their mechanical properties and high temperature corrosion resistance were tested and analyzed. The coating materials included NiCr, IN625, Ni-21Cr-10W-9Mo-4Cu, and iron-based partly amorphous alloy SHS9172 (Fe-25Cr-15W-12Nb-6Mo). High temperature corrosion testing was performed in NaCl-KCl-Na2SO4 salt with controlled H2O atmosphere at 575 and 625 C. The corrosion test results of the coatings were compared to corrosion resistance of tube materials (X20, Alloy 263 and Sanicro 25).
Research output: Contribution to journal › Review Article › Scientific › peer-review
Lubricated icephobic coatings were fabricated by flame spraying with hybrid feedstock injection. In this one-step process, composite coatings were produced by spraying a matrix material from a combustion flame spray gun and a lubricating additive from an injector, externally to the flame. External injection avoided possible thermal degradation of the heat sensitive additive during spraying. Inexpensive and widely available feedstock materials were used, polyethylene as the matrix and solid cottonseed oil as the lubricating additive. The coating properties were investigated by thermal and chemical analyses, surface roughness and wettability measurements at room temperature and in cold conditions. The icephobic behaviour was evaluated by accreting ice from supercooled water droplets in the icing wind tunnel. Ice adhesion was measured by the centrifugal ice adhesion test. The results showed that lubricant addition improved the icephobic performance of the coatings. Moreover, cooling the flame temperature with compressed air addition reduced thermal degradation of polymers. This was beneficial for the icephobic behaviour, thus lowering the shear ice adhesion strength down to 23 kPa ± 6 kPa. In conclusion, lubricated icephobic coatings were successfully produced by combining the hybrid feedstock injection and the thorough optimization of process parameters. This approach provides a potential surface engineering solution for the industrial sectors facing icing problems.
Research output: Contribution to journal › Article › Scientific › peer-review
An initial friction peak typically occurs in a dry self-mated quenched and tempered steel fretting contact in gross sliding conditions. The peak is related to adhesive friction and wear, which causes non-Coulomb friction. An early surface degradation including cracks may occur. To avoid such a peak, different media were studied using a flat-on-flat fretting test device with a large annular contact. All the media decreased the initial friction peak in comparison to the dry reference case, and in one series the peak was completely removed. The peak could often be delayed by lubrication. The steady-state coefficient of friction values mostly remained at similar levels to those of the dry contact, but decreased when oil was applied. Nevertheless, some surface damage occurred in every test, with varying amounts of wear.
Research output: Contribution to journal › Article › Scientific › peer-review
Novel NaYF4:Yb3+, Er3+ nanocrystals containing phosphate glass with composition 83.25NaPO3–9.25NaF-5ZnO-2.5Ag2O (in mol%) was prepared by adding the NaYF4:Yb3+, Er3+ nanocrystals in the glass using the direct doping method. The optical and luminescence properties of this new glass are presented and discussed. The newly developed glass exhibits visible emission under 980 nm pumping with high intensity confirming the presence of the NaYF4:Yb3+, Er3+ nanocrystals in the glass. From the absorption spectrum of the as-prepared glass, it is showed that the as-prepared glasses contains already Ag nanoparticles which are thought to precipitate due to the decomposition of some of the NaYF4:Yb3+, Er3+ nanocrystals occurring during the glass preparation. A heat treatment of the glass was found to lead to the migration of Ag species at the surface of the glass as evidenced using SEM and to a decrease of the intensity of the upconversion mostly due to an increase of the inter defects in the NaYF4:Yb3+, Er3+ nanocrystals due to the heat treatment.
Research output: Contribution to journal › Article › Scientific › peer-review
This study encompasses a comprehensive account of the abrasive wear properties of carbide-free, ultrahigh-strength bainitic steels processed through ausforming at three different temperatures well below the recrystallization stop temperature followed by bainitic transformation at temperatures close to the Ms temperature. Five medium-carbon, high-silicon compositions were designed for the study by suitably varying the alloying levels of carbon, vanadium, niobium, molybdenum, and aluminum. While ausforming at lower temperatures enabled a large number of nucleation sites leading to significant refinement of bainitic laths, the decomposition of austenite at relatively low transformation temperatures was accelerated due to the presence of a high dislocation density, thus enabling completion of bainitic transformation in a reasonable length of time. The steels were characterized in respect of microstructural features and mechanical properties, besides evaluation of wear resistance through a high-stress abrasive wear testing method with natural granite abrasives. The microstructures comprised different fractions of bainitic ferrite and/or granular bainite (56–68%), martensite (0–25%), besides a significant fraction of retained austenite (20–34%) manifesting as pools and also interlath films, depending on the ausforming conditions and subsequent cooling paths. A tensile strength of 1900 MPa level was achieved with hardness exceeding 500 HV for the medium-temperature ausformed steel containing a high carbon content that also showed lowest mass loss in the wear test. The hardness-to-mass loss ratio appeared highly promising with some of the carbide-free bainitic steels on par with or better than the reference martensitic steel. The high work-hardening capability as a consequence of the strain-induced austenite to martensite transformation was considered as the main factor for the superior abrasive wear resistance of the carbide-free bainitic steels.
Research output: Contribution to journal › Article › Scientific › peer-review
Prior austenite grain size has a marked effect on the hardenability, strength, and impact toughness properties of steels. This study was conducted in order to understand the effect of prior austenite grain size and morphology on the mechanical properties and abrasive wear performance of an ultra-high strength steel. A commercial quenched 500 HB grade wear-resistant steel was selected for the study: the steel was austenitized at two different temperatures and compared to the original, as-received quenched condition. The resulting mean prior austenite grain size was ranging from 14 μm to 34 μm. The decrease in grain size improved the low-temperature impact toughness properties. A high stress abrasive wear testing method with natural granite abrasives was utilized for the evaluation of abrasive wear resistance. The results suggest that decreasing the prior austenite grain size improves the abrasive wear resistance with similar hardness level martensitic steels. In addition, high-resolution electron backscatter diffraction measurements revealed formation of ultra-fine grain structures in the severely deformed regions of the wear surfaces.
Research output: Contribution to journal › Article › Scientific › peer-review
In this paper, additive layer-by-layer fabrication of a fully screen printed monolithic supercapacitor exhibiting performance comparable with supercapacitors prepared using lamination is reported. A novel separator material improves the performance of the monolithic supercapacitor, is easily applicable using scalable processes such as screen and stencil printing, and is based on sustainable biomaterials. The additive monolithic manufacturing offers advantages for system integration and avoids the need of an additional alignment step as needed in the fabrication of laminated supercapacitors. Previously, the monolithically fabricated supercapacitors showed higher equivalent series resistance (ESR) and leakage current than the laminated ones. By using microfibrillated cellulose (MFC) and chitosan as separator materials ESR and leakage current were decreased. These disposable and non-toxic aqueous electrolyte supercapacitors are optimized for autonomous sensor systems, for example in Internet-of-Things (IoT) applications, with capacitance of 200–300 mF and ESR of about 10 Ω. The new composite separator material consisting of MFC and chitosan has good adhesion on the electrodes and the substrate, is easy to apply using printing and coating processes, and does not diffuse into the porous electrode. Graphic Abstract: [Figure not available: see fulltext.].
Research output: Contribution to journal › Article › Scientific › peer-review
Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and protein-lipid complexes. Following the Saffman-Delbrück model, protein radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbrück model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.
EXT="Martinez-Seara, Hector"
EXT="Ollila, O. H.Samuli"
Research output: Contribution to journal › Article › Scientific › peer-review
Material and spray process selection are the key factors in the tailoring of thermal sprayed coatings for demanding industrial applications. In this study, four commercial Cr3C2-based feedstock materials were sprayed with gas-fuelled high-velocity oxygen-fuel (HVOF) and modern high-velocity air-fuel (HVAF) spray processes. Two materials with standard Cr3C2–25NiCr composition (porous and dense), a Cr3C2–50NiCrMoNb and Cr3C2–37WC–18NiCoCr materials were sprayed in addition to the reference WC-10Co4Cr material. The Cr3C2–50NiCrMoNb had a higher content of the Ni-based metal matrix compared to standard Cr3C2–25NiCr composition for added corrosion resistance, while the Cr3C2–37WC–18NiCoCr material contained additional tungsten carbide (WC) particles to improve the wear resistance. In abrasion and dry particle erosion, the Cr3C2–50NiCrMoNb coatings showed a higher degree of plastic deformation and increased material loss, whereas the Cr3C2–37WC–18NiCoCr coating had wear resistance between the standard Cr3C2–25NiCr and reference WC-10Co4Cr coatings. In cavitation erosion, the lower carbide content of Cr3C2–50NiCrMoNb coatings turned out to improve the resistance against fatigue wear due to higher fracture toughness. Overall, the HVAF sprayed coatings had higher elastic modulus, higher fracture toughness, equal or higher abrasion and erosion resistance, and higher cavitation erosion resistance compared to the HVOF sprayed counterparts.
Research output: Contribution to journal › Article › Scientific › peer-review
Borosilicate bioactive glasses are promising for bone tissue engineering. The objective was to assess the impact of magnesium and/or strontium, when substituted for calcium on the glasses' thermal and dissolution properties. Both Mg and Sr substitution appeared to enhance the hot forming domain, i.e. the ability to hot process (sinter, draw fibres) without adverse crystallization. Structural analysis indicated that substitution of MgO and/or SrO for CaO results in changes in the BO3/BO4 ratio as well as in the ratio between bridging and non-bridging oxygen atoms in the silicate structure. Additionally, a de-shielding effect was noticed when Ca, Mg and Sr are present together in the glass network, possibly owing to PO4 3− charge-balanced preferentially by Na+. The Mg and/or Sr substitution resulted in a lower ion release in simulated body fluid and delayed formation of hydroxyapatite. However, once this layer formed it consisted of a Mg/Sr-substituted apatite. This work highlights the effect of combined ionic substitutions on bioactive glass structure and properties.
Research output: Contribution to journal › Article › Scientific › peer-review
The straightforward synthesis of structurally unique DPP-BODIPY hybrids has been developed using unsymmetrical, imidazopyridine substituted DPPs. These hybrids exhibit a superb combination of photophysical properties including high photostability, good fluorescence quantum yield as well as markedly bathochromically shifted absorption and emission compared to conventional diketopyrrolopyrroles. Increasing the size of the imidazopyridine substituent and/or the electron donating power of the other aryl substituent can further redshift both absorption and emission to reach ∼650 nm for the free-base and ca. 700 nm for boron-chelates. A strong intramolecular hydrogen bond is responsible for the small change in geometry between the ground and excited states and hence relatively small differences in photophysical properties upon formation of boron-chelates are observed. The solvent dependence of the photophysical properties for the free base and DPP-BF2 complexes were investigated and show strong fluorescence with long lifetimes in both non-polar and polar aprotic environments.
Research output: Contribution to journal › Article › Scientific › peer-review
Yb3+ doped oxyfluorophosphate glasses with the composition (98.75) [90NaPO3-(10-x) Na2O-xNaF] - 1.25Yb2O3 (in mol%) with x = 0, 2.5, 5, 7.5 and 10 were prepared using a standard melting process. The progressive replacement of Na2O by NaF leads to an increase in the number of Q2 units at the expense of the Q1 units. This increase in the polymerization of the glass network leads to a shift of the optical band gap to lower wavelength, to a slight increase in the intensity of the emission at 1000 nm and more importantly to a change in the glass crystallization process. Indeed, both surface and bulk crystallization were observed in the glass with x = 0 while surface crystallization only occurs when NaF is added in the phosphate network. The heat treatment leads to the precipitation of at least three crystalline phases: as x increases, the NaPO3 phase grows at the expense of Na5P3O10. All glasses precipitate the Yb containing crystal, NaYbP2O7 which leads to an increase in the intensity of the emission at 1000 nm compared to the emission at 975 nm. We show for the first time to the best of our knowledge that transparent Yb3+ doped phosphate glass-ceramics can be obtained within this glass system when free of NaF.
Research output: Contribution to journal › Article › Scientific › peer-review
Cold gas spraying was used to make a coating from an equiatomic CrFeNiMn high-entropy alloy. This four-component alloy was chosen because it is Co-free, thus allowing application in nuclear industries as a possible replacement of currently used stainless steel coatings. The feedstock material was gas atomized powder with a particle size distribution from 20 to 45 μm. A number of parameters were tested, such as the powder feed rate and gas feed pressure, in order to obtain as dense a coating as possible with nitrogen as the process gas. Spraying was performed using a gas preheating temperature of 1000 °C, gas feed pressure ranging from 50 to 60 bar, and two powder feeding rates. The coating thicknesses ranging from 230 to 490 m and porosities ranging from 3% to 10% were obtained depending on the powder feed rate and gas feed pressure. The hardness of the cross-section of the coating was usually lower than that of the surface. The highest coating hardness obtained was above 300 HV0.3 for both the surface and the cross-section. The as-atomized powder consisted of a face-centered cubic (FCC) phase with a minute amount of body-centered cubic (BCC) phase, which was no longer detectable in the coatings. The microstructure of the coating was highly stressed due to the high degree of deformation occurring in cold gas spraying. The deformation leads to strain hardening and induces a pronounced texture in the coating. The 111 planes tend to align along the coating surface, with deformation and texturing concentrating mainly on particle boundaries. A high-entropy alloy (HEA) coating was successfully sprayed for the first time using nitrogen as a process gas. The coating has the potential to replace stainless steel coatings in nuclear industry applications.
Research output: Contribution to journal › Article › Scientific › peer-review
Mechanical recycling of multilayer plastic films from food packages was investigated. The multilayer films were manually separated from municipal solid waste, washed, grinded, and finally compounded at 0–100 wt% concentrations with virgin low-density polyethylene (PE-LD). Polyethylene grafted with maleic anhydride (PE-g-MA) compatibilizer was used in two of the compounds to replace 2 and 5 wt% of the PE-LD to study its effect as well. PE-g-MA is expected to improve the mechanical properties of the compounds by promoting the adhesion between incompatible polymer phases. The composition of the compounds was characterized with Fourier-transform infrared spectroscopy and differential scanning calorimetry and their properties were studied with tensile testing and rotational rheometer measurements. All tested compounds had relatively good mechanical properties and processability. This indicates that recycled multilayer films could replace at least part of the virgin PE-LD in applications where high-thermal stability or good visual appearance is not required. The PE-g-MA compatibilizer did not have a significant effect on the mechanical properties of the compounds.
Research output: Contribution to journal › Article › Scientific › peer-review
We investigate electronic transport properties of as-grown and annealed n-type modulation-doped Al0.15Ga0.85As/GaAs1-xBix (x = 0 and 0.04) quantum well (QW) structures using magnetotransport measurements in the temperature range 4.2 K and 60 K and at magnetic fields up to 18 T. Thermal annealing process was applied at two different temperatures, 700 °C and 350 °C during 60 s and 180 s, respectively. We find that electron effective mass and 2D electron density in as-grown Bi-containing sample are slightly lower than that in Bi-free one. Furthermore, quantum electron mobility and quantum scattering time are observed to be decreased in Bi-containing samples. The annealing process at 700 °C causes a slight increase in electron effective mass and 2D electron density. A negligible decrease in electron effective mass and an increase in 2D electron density are determined following annealing at 350 °C. The observed change in electron effective mass following thermal annealing process is attributed to changing 2D electron density in the samples. No improvement on quantum electron mobility and quantum scattering time are observed following thermal annealing at both process temperatures. We determine that one electron subband (e1) for as-grown and annealed (at 700 °C for 60 s) Bi-containing QWs and two electron subbands (e1 and e2) for the annealed (at 350 °C for 180 s) GaAsBi QW sample and the Bi-free QW sample contribute to electronic transport. Our results reveal that there is no significant direct effect of Bi on effective electron mass, but an indirect effect, in which Bi can provoke changes in 2D electron density and hence causes not to observe actual band-edge electron mass but a deviation from its band-edge value. Therefore, it can be concluded that dispersion curve of conduction band does not change as an effect of Bi incorporation in GaAs.
Research output: Contribution to journal › Article › Scientific › peer-review
This paper presents a systematic study of the effect of various WC-CoCr powders on the residual stresses of the high pressure HVOF sprayed coating. As the residual stresses are recognized to play a significant role in the mechanical and fatigue resistance of the coating, it is understandable that their management is important for damage tolerant coating design. Several studies have recently shown that processes, which produce high particle kinetic energy and lower particle temperature, such as Warm spray, HVAF and high-pressure HVOF processes, generate higher peening stresses and therefore final residual stresses is more compressive compared to lower kinetic energy HVOF systems. In addition to the spraying process, powder properties are known to be one of the most important variables in thermal spraying. Nevertheless, only few studies can be found on the effect of powder properties on residual stresses. The aim of this study was to understand the effect of different powder properties on the formation of residual stress. In situ monitoring was utilized to record curvature and temperature during spraying and to calculate coating residual stresses. This approach is a useful tool for understanding of residual stresses during the thermal spraying process enabling their manipulation. It was found that the powders, with only minor differences in density and particle size, produced a significant difference of about 350 MPa in the stress states of the coatings. The combined effect of spray powder properties and spray parameters on residual stress was almost 560 MPa.
Research output: Contribution to journal › Article › Scientific › peer-review
The ultrafast photochemistry of the [Cr(NCS)6]3- complex upon excitation to the 4T2 ligand-field (LF) state was studied in dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) in a wide temporal range (100 fs to 9 ms) by a combination of femtosecond and nanosecond transient absorption spectroscopy techniques and supported by quantum-chemical DFT/TD-DFT calculations. The initially excited 4T2 state undergoes intersystem crossing to the vibrationally hot 2E state with time constants of 1.1 ± 0.2 and 1.8 ± 0.1 ps in DMSO and DMF, respectively. Vibrational relaxation occurs in the same time scale and takes 1-5 ps. A major part of the [Cr(NCS)6]3- complex in the 2E state undergoes intersystem crossing to the ground state with time constants of 65 ± 5 and 85 ± 5 ns in DMSO and DMF, respectively. A minor part of electronically excited [Cr(NCS)6]3- undergoes irreversible photochemical decomposition. In DMSO, the photolysis of the [Cr(NCS)6]3- complex results in single or double isothiocyanate ion release followed by the coordination of the solvent molecules with a time constant of 1 ± 0.2 ms.
Research output: Contribution to journal › Article › Scientific › peer-review
Process optimization and quality control are important issues in cold spraying and coating development. Because the cold spray processing is based on high kinetic energy by high particle velocities, online spray monitoring of particle inflight properties can be used as an assisting process tool. Particle velocities, their positions in the spray jet, and particle size measurements give valuable information about spraying conditions. This, in turn, improves reproducibility and reliability of coating production. This study focuses on cold spraying of Al6061 material and the connections between particle inflight properties and coating characteristics such as structures and mechanical properties. Furthermore, novel 2D velocity scan maps done with theHWCS2 online spray monitoring system are presented as an advantageous powder and spray condition controlling tool. Cold spray processing conditions were similar using different process parameters, confirmed with the online spray monitoring prior to coating production. Higher particle velocities led to higher particle deformation and thus, higher coating quality, denser structures, and improved adhesions. Also, deposition efficiency increased significantly by using higher particle velocities.
Research output: Contribution to journal › Article › Scientific › peer-review
Persistent luminescent amorphous borosilicate scaffolds were successfully prepared, for the first time, with a porosity of >70% using the burn-off technique. The persistent luminescence was obtained by adding the SrAl2O4:Eu2+,Dy3+ microparticles: i) in the glass melt or ii) in the glass crushed into powder prior to the sintering. The scaffolds prepared by adding the microparticles in the glass melt exhibits lower persistent luminescence and a slower reaction rate in simulated body fluid than the scaffolds prepared by adding the microparticles in the glass powder due to the release of strontium from the microparticles into the glass during the glass melting.
INT=phys,"Del Cerro, Paloma Roldan"
INT=bmte,"Teittinen, Henriikka"
Research output: Contribution to journal › Article › Scientific › peer-review
Thermal spray processes have been developing toward lower particle temperature and higher velocity. Latest generation high-velocity oxygen-fuel (HVOF) and high-velocity air-fuel (HVAF) can produce very dense coating structures due to the higher kinetic energy typical for these thermal spray processes. Thermally sprayed coatings usually contain residual stresses, which are formed by a superposition of thermal mismatch, quenching and, in case of high kinetic energy technologies, peening stresses. These stresses may have a significant role on the mechanical response and fatigue behavior of the coating. Understanding these effects is mandatory for damage tolerant coating design and wear performance. For instance, wear-resistant WC-CoCr coatings having high compressive stresses show improved cavitation erosion performance. In this study, comparison of residual stresses in coatings sprayed by various thermal spray systems HVOF (Thermico CJS and Oerlikon Metco DJ Hybrid) and HVAF (Kermetico AcuKote) was made. Residual stresses were determined through thickness by utilizing Tsui and Clyne analytical model. The real temperature and deposition stress data were collected in the coating process by in situ technique. That data were used for the model to represent realistic residual stress state of the coating. The cavitation erosion and abrasion wear resistance of the coatings were tested, and relationships between residual stresses and wear resistance were discussed.
Research output: Contribution to journal › Article › Scientific › peer-review
Global warming and environmental awareness in general have increased the research into thermal energy storage fields. Phase-change materials (PCMs) are efficient in storing thermal energy because of their high latent heat during the phase change. As the phase change is often based on the melting of the PCM, they need to be encapsulated, for example, by dispersing the PCM to a polymer matrix. In this study, the feasibility of the use of paraffin-natural rubber composites in applications requiring both the good ability to store heat energy and good vibration-damping properties is studied. This includes studies on PCM concentration and the microencapsulation of the PCM. It was found that the heat storage capacity increases with increasing PCM content, although the theoretical maximum capacity is not achieved because the PCM is released during vulcanization and the paraffin blooms. In addition, the loss factor was found to be increased at elevated temperatures, indicating improved damping properties. The encapsulation of PCM is found to have a positive influence on the heat storage capacity and the mechanical and damping properties of the rubber compound.
INT=msee,"Ruokangas, Sasu"
Research output: Contribution to journal › Article › Scientific › peer-review
Phase change materials are utilized in heat storage applications, as they have high latent heat during the phase transition. In addition, high thermal conductivity is required from the heat storage materials to achieve high energy efficiency. In this study, the effect of carbon nanotubes (CNTs) and nanodiamonds (NDs) on the thermal conductivity and the heat storage capacity of the paraffin–natural rubber composites was studied. It was found that the CNTs work better than NDs in such composites. They increase thermal conductivity significantly and thus improve the heat transfer rate of the composite. They were also found to prevent the migration of paraffin out of the rubber during the vulcanization process, which increases the lifetime of the composite.
Research output: Contribution to journal › Article › Scientific › peer-review
In this study, the local electrochemical activity of untreated and passivated (natural or chemical passivation) zinc specimens was observed during immersion in a 0.1-M NaCl solution. The localized anodic activity during the exposure, measured with the scanning vibrating electrode technique, was linked to zinc dissolution by the pitting corrosion mechanism. It was correlated to specific corrosion products characterized by Fourier transmission infrared (FTIR) microscopy. FTIR molecule maps were produced from individual pitting corrosion sites (100–200 µm in width). With argon ion beam milling and latest energy-dispersive X-ray spectroscopy (EDS) technology, element maps with a high spatial resolution (≪100 nm) were recorded from abrasion- and beam-sensitive corrosion products, showing a residual layer structure. This study demonstrates the capability of FTIR mapping, cross-section polishing, and state-of-the-art scanning electron microscopy imaging, and EDS element mapping to produce high-resolution elemental, molecular, and visual information about pitting corrosion mechanisms on a hot-dip galvanized steel sample.
Research output: Contribution to journal › Article › Scientific › peer-review
Magnesium aluminate, MgAl2O4, spinel powders for thermal spraying, were synthesized from secondary raw materials by spray drying and subsequent reaction sintering. Talc ore mining tailings and aluminium hydroxide precipitate from aluminium anodizing process were studied. A stoichiometric MgAl2O4 spinel coating was prepared as a reference using pure raw materials. Atmospheric plasma spraying resulted in the formation of ceramic coatings. Microstructural investigations revealed that the reference coatings exhibited crystalline lamellar microstructure of MgAl2O4 but secondary coatings contained amorphous areas between the crystalline MgAl2O4 clusters. Abrasive wear test results revealed considerably lower wear rate for secondary coatings. It is suggested that the different structure of coatings, particularly the high degree of amorphous phase between the isolated crystalline MgAl2O4 clusters caused the higher abrasive wear resistance by changing the wear mechanism. The dielectric breakdown strength of the secondary coatings were at the same level, 24 V/μm, as compared to reference coating, 23 V/μm.
Research output: Contribution to journal › Article › Scientific › peer-review
We present a colour tunable system obtained by combining a humidity-responsive cholesteric liquid crystal network and hydrogel coatings, in a diligently designed cell-geometry. The design enables sensitive colour tuning via temperature-induced changes in humidity inside the cell. Uniquely, the system exhibits a bifacial response, causing either a blue- or red-shift in the reflected color when heated from opposite sides.
Research output: Contribution to journal › Article › Scientific › peer-review
Natural rubber (NR) is a versatile material possessing outstanding mechanical properties, which can be used in multiple applications including the rapidly developing dielectric elastomer generators (DEGs). One of the drawbacks of the existing DEGs is their low efficiency, which can be improved by lowering the dielectric and mechanical losses originating from the material. Therefore, the present research was focusing on assessing the ways to minimize the dielectric and mechanical losses of NR films rather than developing a DEG. In this article, the effect of natural proteins and the rubber stabilizers on energy dissipation of NR films was evaluated. Moreover, the effect of sample posttreatment (with water and acetone), curing and time after cure was discussed. As a result, deproteinized NR stabilized by ammonium caseinate outperformed unmodified NR due to reduced dielectric losses, mechanical hysteresis and stress relaxation. Moreover, the posttreatment methods were found to moderately reduce the material-relates losses.
Research output: Contribution to journal › Article › Scientific › peer-review
We report on the power loss mechanisms of hot electrons in as-grown and annealed n-type modulation-doped Al0.15Ga0.85As/GaAs1-xBix (x = 0 and 0.04) quantum well structures considering acoustic phonon interactions via the deformation potential (non-polar) and piezoelectric (polar) scatterings. The two-dimensional (2D) electron gas is heated by applying various electric fields under a steady-state magnetic field, and the effect of the applied electric field on the Shubnikov de Haas (SdH) oscillations is analyzed to investigate the power loss mechanism. The temperature of hot electrons (T e) has been obtained by comparing the lattice temperature and applied electric field dependencies of the SdH oscillation amplitude. The hot electron temperature is almost the same for both Bi-free and Bi-containing samples except for the sample annealed at a higher temperature (700 °C) than the growth temperature of GaAsBi. The electron temperature dependence of power loss is analyzed using current theoretical analytic models derived for 2D semiconductors. We find that energy relaxation occurs in the intermediate temperature regime, including mixing of piezoelectric and deformation potential scattering. The power loss of hot electrons is found to be proportional to (Teγ-TLγ) with γ in the range from 2.4 to 4.2, which indicates that the hot electron relaxation is due to acoustic phonon scatterings via unscreened deformation potential and piezoelectric scattering. It is found that deformation potential scattering is dominant over piezoelectric scattering in the Bi-free sample, while the incorporation of Bi into the GaAs lattice makes these processes comparable. After thermal annealing at lower than growth temperature (350 °C), the scattering mechanism switches from deformation potential to piezoelectric scattering. After thermal annealing at higher than growth temperature (700 °C), the theoretical model does not fit to the experimental results due to degradation of the sample.
Research output: Contribution to journal › Article › Scientific › peer-review
Tempering is an essential part in the fabrication of ultra-high strength steels and it is also widely applied in the processing of wear-resistant steels. In this paper, the effects of different tempering temperatures on the impact-abrasive and abrasive wear properties of martensitic ultra-high strength steels were studied. A novel press-hardening steel with carbon content of 0.4 wt% was received in hot-rolled condition and further austenitized, water-quenched and tempered for 2 h at different temperatures (150–400 °C). Tensile strength values up to 2200MPa and hardness exceeding 650HV were measured. Wear testing was done with impact-abrasive impeller-tumbler and abrasive dry-pot application-oriented test methods simulating mining and mineral handling environments. A laboratory rolled 600HB steel and a commercial 500HB grade wear-resistant steel were included for comparison. The wear surfaces and cross-sections of the samples were thoroughly characterized. Both testing methods produced highly deformed surface layers and strong work-hardening. Wear performance was mainly controlled by the initial hardness of the steels, but differences were found in the highly work-hardened surfaces of the steels.
Research output: Contribution to journal › Article › Scientific › peer-review
Using the spectroscopic limited maximum efficiency, and Shockley and Queisser predictor models, we compute the solar efficiency of the chalcopyrites AgMX 2 (M = In, Al; X = S, Se, Te). The results presented are based on the estimation of the electronic and optical properties obtained from first principles density functional theory as well as the many-body perturbation theory calculations. The results from this report were consistent with the experimental data.The optical bandgap was accurately estimated from the absorption spectra, obtained by solving the Bethe and Salpeter equation. Fitting the Tauc's plot on the absorption spectra, we also predicted that the materials studied have a direct allowed optical transition. The theoretical estimations of the solar cell performance showed that the efficiencies from the Shockley and Queisser model are higher than those from the spectroscopic limited maximum efficiency model. This improvement is attributed to the absorption, the recombination processes and the optical transition accounted in the calculation of the efficiency.
Research output: Contribution to journal › Article › Scientific › peer-review
In the last decade, several studies have shown that polybutylene succinate (PBSu)has a high potential as a biomaterial enabling cell adhesion and growth. In this study, porous PBSu films have been prepared by the breath figure method (BF)and by particulate leaching (PL), and characterized in terms of thickness, surface properties, diffusion capacity and in vitro stability. Because porous films are of high interest for tissue engineering of retinal pigment epithelium (RPE), the initial viability and adhesion of human embryonic stem cell-derived RPE onto the PBSu films was then evaluated. To the best of our knowledge, this is the first study on the adhesion behavior of hESC-RPE onto porous and biodegradable polymer surfaces. The results clearly demonstrated that the two manufacturing methods produced materials with very distinct properties. Films produced by BF expressively demonstrated the highest roughness and surface area, and the lowest water contact angle. These features likely contributed to increase the biocompatibility of the surface, particularly when coated with laminin and collagen IV, as observed by the improved cell viability, cell morphology, adhesion and production of extracellular matrix proteins. Altogether, our results showed not only that PBSu holds high potential in retinal tissue engineering, but also that the physical properties and biocompatibility of the material are highly dependent on the adopted casting method.
Research output: Contribution to journal › Article › Scientific › peer-review
The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA)and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h.
EXT="Mylläri, V."
Research output: Contribution to journal › Article › Scientific › peer-review
Two different analytical approaches—collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) and chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF)—were applied to detect and identify the online gaseous KOH and HCl formed in the addressed high-temperature reactions. Samples of pure KCl, KCl+Cr, KCl+Fe, and KCl+316 L were studied at 550°C under dry and humid conditions with varying oxygen concentrations. The goal was to shed more light on the gas-phase chemistry during KCl-induced corrosion under conditions relevant to biomass combustion. CI-APi-TOF proved to be a valuable tool for high-temperature corrosion studies: HCl was identified to have formed during the reactions under humid conditions. On the contrary, despite the known sensitivity of CPFAAS, the formation of KOH could not be verified in any of the performed measurements.
Research output: Contribution to journal › Article › Scientific › peer-review
The fatigue life of thermally sprayed Al2O3- and Cr2O3-based coatings has been studied under low-energy (0.7–5 mJ) impact conditions. A threshold impact energy and amount of repetitions the coatings can endure with said energy before catastrophic failure was obtained. The catastrophic failure was determined to occur when the fracture mode of the coating switched from brittle cone cracking to quasi-plastic radial cracking. The results are examined relative to the microstructural features along with other properties of the coatings - hardness and cavitation resistance. The experiment provided a new approach for a straightforward comparison of the micro-scale impact fatigue life of thermally sprayed coatings unachievable with previous methods.
Research output: Contribution to journal › Article › Scientific › peer-review
Er 3+ doped phosphate glasses with the composition 75NaPO 3- 25CaF 2 (mol%)were prepared at different melting temperatures to demonstrate the importance to quantify the fluorine content when preparing oxyfluoride glasses. Indeed, increasing the melting temperature from 900 to 1000 °C leads to a small reduction in the fluorine content from 9.4 at % to 8.8 at % as quantified using EPMA. Whereas this loss of fluorine can be suspected from small changes in the thermal properties of the glass, it increases significantly the glass crystallization tendency in this glass system. This means that a heat treatment of the as-prepared glass should be performed when evaporation of fluorine during the glass melting is suspected. Sample preparation for the characterization of the spectroscopic properties of the glasses is discussed here as well; bulk glasses should be used when measuring the spectroscopic properties of oxyfluoride glasses, which are known to be hygroscopic. It is shown, in this work, that a heat treatment of the glass within the investigated glass system leads to transparent glass-ceramics with volume precipitation of Er 3+ doped CaF 2 crystals with strong upconversion.
Research output: Contribution to journal › Article › Scientific › peer-review
The use of practical high temperature superconductors (HTS), REBCO tapes especially, in magnet applications has become possible thanks to the increasing interest of manufacturers. One difficulty has been the nonlinear material properties that are challenging to measure and model. To advance in such, demo systems are needed and they must be thoroughly analyzed. Recently, one of the first HTS dipole magnets was built to study the usability of REBCO Roebel cables in particle accelerator magnets. The prototype magnet Feather-M2 was designed, constructed and tested within EUCARD2 collaboration project at CERN in 2017. In the measurements, the magnet behaved in an unexpected way: the magnet was able to be operated at operation currents above the maximum current that was predicted based on short-sample measurements. Additionally, unexpectedly gradual dependency between magnet's resistive voltage and operation current was observed. In this work, a thermodynamical model is formulated in order to study the behavior of Feather-M2. The model was parametrized and the parameters were solved via inverse problem by finding the best match to experimental results. Thereby insight was gained on the prospects of the utilized thermodynamical model and also on the behavior and operation conditions of the magnet via the inverse problem solutions. To summarize, this paper presents a new methodology for analyzing magnets in operation and applies it to a state-of-the-art magnet.
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally sprayed hardmetal coatings are widely used to protect components and surfaces against wear in various applications. Hard and wear resistant coatings increase the component lifetime and can generate significant savings promoting ecological manufacturing. This study focuses on the performance of tungsten carbide (WC-10Co4Cr)and chromium carbide (Cr 3 C 2 -25NiCr)based hardmetal coatings sprayed with gaseous and liquid fuelled high-velocity oxygen-fuel (HVOF)spray processes and a modern high-velocity air-fuel (HVAF)spray process. The coating characterisation revealed reduced carbide dissolution with decreasing process temperature and denser feedstock powder particles. Smaller carbide size in the Cr 3 C 2 -25NiCr material significantly reduced the carbide rebounding leading to higher carbide content in the sprayed coating and improved erosion wear resistance. Most significant improvements were observed in cavitation erosion for HVAF sprayed WC-10Co4Cr coatings (0.4 μm/h)compared to the HVOF sprayed coatings (1.5–3.7 μm/h). The cavitation erosion resistance of the HVAF sprayed coatings was almost at the level of the WC-10Co sintered bulk (0.2 μm/h).
INT=msee,"Rubio Peregrina, S."
Research output: Contribution to journal › Article › Scientific › peer-review
A new biomimetic stimuli-responsive adaptive elastomeric material, whose mechanical properties are altered by a water treatment is reported in this paper. This material is a calcium sulphate (CaSO4) filled composite with an epoxidized natural rubber (ENR) matrix. By exploiting various phase transformation processes that arise when CaSO4 is hydrated, several different crystal structures of CaSO4·xH2O can be developed in the cross-linked ENR matrix. Significant improvements in the mechanical and thermal properties are then observed in the water-treated composites. When compared with the untreated sample, there is approximately 100% increase in the dynamic modulus. The thermal stability of the composites is also improved by increasing the maximum degradation rate temperature by about 20 °C. This change in behavior results from an in situ development of hydrated crystal structures of the nanosized CaSO4 particles in the ENR matrix, which has been verified using Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and X-ray scattering. This work provides a promising and relatively simple pathway for the development of next generation of mechanically adaptive elastomeric materials by an eco-friendly route, which may eventually also be developed into an innovative biodegradable and biocompatible smart polymeric material.
Research output: Contribution to journal › Article › Scientific › peer-review
GaSbBi alloys have recently emerged as attractive materials for mid-infrared optoelectronics owing to strong band gap reduction enabled by Bi incorporation into the GaSb matrix. The fundamental understanding of the epitaxial process required to demonstrate high quality crystals is in an early-developmental phase. From this perspective, we report on the key role played by the Sb/Ga flux ratio in controlling the structural quality and incorporation of high Bi content GaSbBi (up to 14.5%-Bi), revealing three distinct epitaxial phases. The first phase (below stoichiometric Sb/Ga) exhibits Ga-Bi compound droplets, low crystal quality, and reduced Bi content. At the second phase (above stoichiometric Sb/Ga), the crystal exhibits smooth surfaces and excellent crystallinity with efficient Bi incorporation. The last phase corresponds to exceeding a Sb/Ga threshold that leads to reduced Bi incorporation, Bi droplets and degraded crystallinity. This threshold value that defines the optimal growth window is controlled by the temperature as well as the Bi/Ga ratio. Increasing temperature increases the threshold, albeit simultaneously reducing Bi incorporation. Conversely, increasing the Bi/Ga flux ratio increases Bi incorporation, while narrowing down and ultimately closing the window. This study provides a general framework enabling development of high quality GaSbBi heterostructures for emerging mid-infrared optoelectronics.
Research output: Contribution to journal › Article › Scientific › peer-review
Two new low alloyed steels were developed with different fracture toughness values but at similar level of hardness with same composition and microstructural phase. The steels were subjected to impact-abrasion wear test. This work examines specifically the additional role of toughness during impact-abrasion wear, using a newly developed high toughness steel. Microstructural characterisation of the damaged samples revealed that better toughness helps resist both impact and abrasion damage.
Research output: Contribution to journal › Article › Scientific › peer-review
The demanding environments typically encountered by the wear resistant steels create challenges for the materials selection, because the hardness grades of the steels alone do not reveal the true nature of their wear behavior. In this study, five commercial wear resistant steels were tested using three application oriented test methods with five different test variables for abrasion, impact-abrasion, and slurry erosion. All the used test methods produced high-stress conditions that crushed the used mineral abrasive, plastically deformed the sample surfaces, and led to the formation of adiabatic shear bands. When the results produced by the chosen methods were compared, the normalization of the wear losses by the wear area and test time revealed well the differences between the methods. The test methods ranked the steels similarly, but there were clear differences in the wear rates and wear mechanisms between the tests. In addition, the abrasive methods produced surface adiabatic shear bands, while subsurface shear bands were initiated by the more impacting methods. In the studied conditions, the work hardening ability of the steel had a clear influence on its wear resistance, which largely explains the marked differences in the wear rates of the studied commercial 500HB grade steels.
Research output: Contribution to journal › Article › Scientific › peer-review
The control of Bi incorporation and material properties in III-V-Bi alloys has proved challenging due to their high sensitivity to the epitaxial growth parameters. Here, we present a methodology for determining the variation in the Ga, As, and Bi fluxes and the temperature across a stationary substrate in molecular beam epitaxy. By correlating the flux distributions with material properties, we identify distinct regimes for epitaxy of GaAsBi. In particular, we devise a detailed image of the interplay between Bi incorporation and structural properties of a bulk GaAs 0.96 Bi 0.04 layer grown on GaAs(1 0 0) with respect to the As/Ga ratio. The influence of As/Ga is analyzed with high resolution over the important stoichiometric range (i.e. As/Ga = 0.6–1.6). Growth outside the near-stoichiometric As/Ga regime leads to decreased Bi incorporation, decreased structural quality and the formation of Ga, Ga/Bi or Bi droplets. On the other hand, growth at As/Ga = 1.00–1.17 leads to maximized material quality. For this regime, the surface roughness is further optimized by fine-tuning the As/Ga ratio to suppress surface mounding to a value of 0.5 nm. The results reveal the extreme sensitivity of GaAsBi growth to small variations in the As/Ga ratio, and demonstrate the applicability of stationary growth in studying these effects.
Research output: Contribution to journal › Article › Scientific › peer-review
The ability to release active agents from a porous scaffold structure in situ enables the simultaneous structural support for the cells proliferating and differentiating towards tissue as well as the stimulation of tissue regeneration. Due to the great potentiality of such approach, drug-releasing scaffolds were fabricated from hydrolytically degradable polymers. Three copolymers of poly(ethylene glycol), ɛ-caprolactone, L- and D,L-lactide were synthesized and blended with bone-growth inducing active agents, dexamethasone (DM) and 2-phospho-L-ascorbic acid trisodium salt (AS). Porous scaffolds were prepared by means of super-critical carbon dioxide foaming. In the final scaffold structures, the particle size, location and the water solubility of the drug affected the release kinetics. As the large and water soluble AS particles were more exposed to the buffer solution compared to small DM particles, the AS release was burst-like whereas DM showed a long-term release. The material structure had a significant effect on the release kinetics as the porous scaffolds released active agents faster compared to the solid cylinders. Furthermore, this study showed the strong effect of polymer degradation and wettability on the release, which were more determinative than the pore architecture.
Research output: Contribution to journal › Article › Scientific › peer-review
This paper presents studies on the utilization of aluminosilicate-based mining tailings as raw materials for mullite-based ceramics. Based on the 3:2 stoichiometric composition, mullite was synthesised by reactive sintering with a series of powder mixtures with alumina additions. X-ray diffractometry and scanning electron microscopy analyses revealed that, at the specific mineralogical composition, mullite structure formed surrounded by an amorphous glass phase in reaction-sintered powder mixtures. Results demonstrated that the chemical and mineralogical composition of mining tailings do have an effect on mullite formation possibilities and, only with the particular mineralogical composition, the mullite formation is possible regardless of the correct Al:Si ratio in tailings. Physical and mechanical properties of the formed ceramics were defined, showing comparable values to 3:2 mullite reference. Mullite structure formation enables a better thermal resistance up to above 1450 °C of the formed tailings-based ceramics compared to other aluminosilicates, reflecting their utilization potential for refractory ceramic applications.
EXT="Lagerbom, Juha"
Research output: Contribution to journal › Article › Scientific › peer-review
Cellulose nanofiber films (CNFF) were treated via a welding process using ionic liquids (ILs). Acid-base-conjugated ILs derived from 1,5-diazabicyclo[4.3.0]non-5-ene [DBN] and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were utilized. The removal efficiency of ILs from welded CNFF was assessed using liquid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The mechanical and physical properties of CNFF indicated surface plasticization of CNFF, which improved transparency. Upon treatment, the average CNFF toughness increased by 27%, and the films reached a Young's modulus of ∼5.8 GPa. These first attempts for IL "welding" show promise to tune the surfaces of biobased films, expanding the scope of properties for the production of new biobased materials in a green chemistry context. The results of this work are highly relevant to the fabrication of CNFFs using ionic liquids and related solvents.
Research output: Contribution to journal › Article › Scientific › peer-review
Thermal spraying using liquid feedstock can produce coatings with very fine microstructures either by utilizing submicron particles in the form of a suspension or through in situ synthesis leading, for example, to improved tribological properties. The focus of this work was to obtain a bimodal microstructure by using simultaneous hybrid powder-precursor HVOF spraying, where nanoscale features from liquid feedstock could be combined with the robustness and efficiency of spraying with powder feedstock. The nanostructure was achieved from YSZ and ZrO2 solution-precursors, and a conventional Al2O3 spray powder was responsible for the structural features in the micron scale. The microstructures of the coatings revealed some clusters of unmelted nanosized YSZ/ZrO2 embedded in a lamellar matrix of Al2O3. The phase compositions consisted of γ- and α-Al2O3 and cubic, tetragonal and monoclinic ZrO2. Additionally, some alloying of the constituents was found. The mechanical strength of the coatings was not optimal due to the excessive amount of the nanostructured YSZ/ZrO2 addition. An amount of 10 vol.% or 7 wt.% 8YSZ was estimated to result in a more desired mixing of constituents that would lead to an optimized coating architecture.
Research output: Contribution to journal › Article › Scientific › peer-review
We report the formation of a new class of solvent-intercalated two-dimensional (SI-2D) formamidinium lead halide perovskites. They can be mixed with three-dimensional (3D) stoichiometric perovskites by controlling the ratio of the precursor solutions. The composite leads to greatly improved photoluminescence quantum yield (PLQY) over the 3D compound. The enhanced PLQY is attributed to a type-I band alignment between the 3D and SI-2D, as revealed by first-principles calculations, which results in confined excitons with enhanced radiative recombination. The films exhibited excellent thermal and air stability retaining PLQY > 20% over 2 months in ambient conditions. Assemblies of halide perovskites with mixed dimensionality offer a pathway to enhance optoelectronic performance and device lifetimes.
Research output: Contribution to journal › Article › Scientific › peer-review
The aim of this study was to fabricate a bioactive optical fiber able to monitor “in situ” its reaction with the body through changes in its optical properties. Core and cladding preforms were prepared with the composition (97.25*(0.50P2O5-0.40SrO-0.10Na2O)-2.5ZnO-0.25Er2O3) and (98.25*(0.50P2O5-0.40SrO-0.10Na2O)-1.75ZnO) (in mol%), respectively, and successfully drawn into a multimode core/clad optical fiber. Optical and near-Infrared images assessed the proper light guiding properties of the fiber. The fibers favor the precipitation of a Ca-P reactive layer at its surface concomitant with a reduction in the fiber diameter, when immersed in SBF, often assigned as a sign of bioactivity. It is clearly shown here that the bio-response of the fiber upon immersion in SBF can be tracked from the decrease in the intensity of the Er3+ ions emission at 1.5 µm. This confirms that the newly developed optical fiber, which combines good optical properties with a suitable bioactive behavior, is a promising platform for the development of novel biomedical devices for biophotonic and photomedical applications. Finally, the successful splicing of the newly developed fiber with commercial optical fibers was an evidence of the possibility to integrate the newly developed phosphate fiber within existing components used in the field of biomedicine.
Research output: Contribution to journal › Article › Scientific › peer-review
Optically-pumped vertical external cavity surface emitting lasers (VECSELs) based on flip-chip gain mirrors emitting at the 1.55-μm wavelength range are reported. The gain mirrors employ wafer-fused InAlGaAs/InP quantum well heterostructures and GaAs/AlAs distributed Bragg reflectors fixed on a diamond heat-sink substrate in a flip-chip geometry, incorporated in a V-cavity configuration. A maximum output power of 3.65 W was achieved for a heat sink temperature of 11°C and employing a 2.2% output coupler. The laser exhibited circular beam profiles for the full emission power range. This demonstration represents more than 5-fold increase of the output power compared to state-of-the-art flip-chip VECSELs previously reported at the 1.55 μm wavelength range. It opens new perspectives for developing practical VECSEL-based laser systems operating at a wavelength range widely used in many applications.
Research output: Contribution to journal › Article › Scientific › peer-review
The decrease of stress at constant strain, that is, the stress relaxation process as a function of temperature, is a central mechanical characteristics of elastomer nanocomposites for their potential applications. However, in the conventional stress relaxation test, the relaxation behavior is usually determined as a function of time at constant temperature. The present work reports the temperature scanning stress relaxation (TSSR) characteristics of a new kind of mechanically adaptive elastomer nanocomposite by monitoring the nonisothermal relaxation behavior as a function of temperature. This kind of adaptive elastomer nanocomposite was prepared by introducing calcium sulfate (CaSO4), as the water-responsive phase into the hydrophilic elastomer matrix. The influence of water-induced structural changes on TSSR behavior was investigated. Water treatment had a strong effect on the shape of the relaxation spectrum of the nanocomposite. It was revealed that the in situ development of hydrated nano-rod crystal structures of CaSO4 in the elastomer matrix was responsible for the changes in the mechanical relaxation behavior of the composites. Atomic force microscopy was used to verify this nano-rod crystal morphology in the elastomer matrix. The mechanism of water-induced mechanical reinforcement of the composite was explored from dynamic mechanical analysis of the material and correlated with its stress relaxation behavior.
Research output: Contribution to journal › Article › Scientific › peer-review
Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.
Research output: Contribution to journal › Article › Scientific › peer-review
Chromium oxide (Cr2O3) is commonly used as an atmospheric plasma-sprayed (APS) coating from powder feedstock in applications requiring resistance to sliding wear and corrosion, as well as amenability to texturing, e.g., in anilox rolls. Recently, high-velocity oxy-fuel spray methods involving suspension feedstock have been considered an extremely promising alternative to produce denser and more homogeneous chromium oxide coatings with lower as-sprayed surface roughness, higher hardness and potentially superior wear performance compared to conventional APS-sprayed coatings. In this study, the impact of process parameters namely auxiliary air cleaning nozzles and a transverse air curtain on suspension high-velocity oxy-fuel-sprayed Cr2O3 suspensions is presented. The produced coatings are characterized for their microstructure, mechanical properties and wear resistance by cavitation erosion. The results reveal the importance of optimized air nozzles and air curtain to achieve a vastly improved coating structure and performance.
Research output: Contribution to journal › Article › Scientific › peer-review
Since the discovery of 45S5 Bioglass® by Larry Hench, bioactive glasses have been widely studied as bone substitute materials and, in more recent years, have also shown great promise for producing three-dimensional scaffolds. The development of additive manufacturing techniques and their application in bone tissue engineering allows the design and fabrication of complex structures with controlled porosity. However, achieving strong and mechanically-reliable bioactive glass scaffolds is still a great challenge. Furthermore, there is a relative paucity of studies reporting an exhaustive assessment of other mechanical properties than compressive strength of glass-derived scaffolds. This research work aimed at determining key mechanical properties of silicate SiO2-Na2O-K2OMgO-CaO-P2O5 glass scaffolds fabricated by robocasting and exhibiting a porosity gradient. When tested in compression, these scaffolds had a strength of 6 MPa, a Young's modulus around 340 MPa, a fracture energy of 93 kJ/m3 and a Weibull modulus of 3, which provides a quantification of the scaffold reliability and reproducibility. Robocasting was a suitable manufacturing method to obtain structures with favorable porosity and mechanical properties comparable to those of the human cancellous bone, which is fundamental regarding osteointegration of bone implants.
EXT="Nommeots-Nomm, Amy"
Research output: Contribution to journal › Article › Scientific › peer-review
Fragmentation of molecular clusters inside mass spectrometers is a significant source of uncertainty in a wide range of chemical applications. We have measured the fragmentation of sulfuric acid clusters driving atmospheric new-particle formation, and developed a novel model, based on first principles calculations, capable of quantitatively predicting the extent of fragmentation.
Research output: Contribution to journal › Article › Scientific › peer-review
INT=fot,"Joost, Urmas"
Research output: Contribution to journal › Article › Scientific › peer-review
In this work, the electronic bandstructure of GaAs1-xBix/GaAs single quantum well (QW) samples grown by molecular beam epitaxy is investigated by photomodulated reflectance (PR) measurements as a function of Bi content (0.0065 ≤ x ≤ 0.0215) and substrate orientation. The Bi composition is determined via simulation of high-resolution x-ray diffraction measurement and is found to be maximized in the 2.15%Bi and 2.1%Bi samples grown on (100) and (311)B GaAs substrates. However, the simulations indicate that the Bi composition is not only limited in the GaAsBi QW layer but extends out of the GaAsBi QW towards the GaAs barrier and forms a GaAsBi epilayer. PR spectra are fitted with the third derivative function form (TDFF) to identify the optical transition energies. We analyze the TDFF results by considering strain-induced modification on the conduction band (CB) and splitting of the valence band (VB) due to its interaction with the localized Bi level and VB interaction. The PR measurements confirm the existence of a GaAsBi epilayer via observed optical transitions that belong to GaAsBi layers with various Bi compositions. It is found that both Bi composition and substrate orientation have strong effects on the PR signal. Comparison between TDFF and calculated optical transition energies provides a bandgap reduction of 92 meV/%Bi and 36 meV/%Bi and an interaction strength of the isolated Bi atoms with host GaAs valence band (C BiM ) of 1.7 eV and 0.9 eV for (100) and (311)B GaAs substrates, respectively.
Research output: Contribution to journal › Article › Scientific › peer-review
Here we are reporting solvothermal synthesis derived diluted magnetic and plasmonic Co-Ga co-doped ZnO nanocrystals with high magnetization values (from 1.02 to 4.88 emu/g) at room temperature. Co-Ga co-doped ZnO nanocrystals show up to 2 fold increase in saturation magnetization compared to Co doped ZnO nanocrystals at the same Co concentration, with the observed room temperature magnetization higher than previously reported values for multifunctional magnetic and plasmonic nanocrystals, and the effect of Ga suggesting some role of the correspondingly introduced itinerant charge. While at the lowest Ga content the nanoparticles appear homogeneously doped, we note that already a moderate Ga content of several percent triggers a fraction of Co to segregate in metallic form in the bulk of the nanoparticles. However, the amount of segregated Co is not sufficient to account for the total effect, whereas a dominating contribution to the observed magnetism has to be related to itinerant charge mediated exchange interactions.
int=fot,"Joost, Urmas"
Research output: Contribution to journal › Article › Scientific › peer-review
The influence of epoxy resin modification by 3-aminopropyltriethoxysilane (APTES) on various properties of warp knitted viscose fabric is reported in this study. Dynamic mechanical, impact resistance, flexural, thermal properties, and burning behavior of the epoxy/viscose fabric composites are studied with respect to varying content of silane coupling agent. The results obtained for APTES-modified epoxy resin based composites reinforced with unmodified viscose fabric composites are compared to unmodified epoxy resin based composites reinforced with APTES-modified viscose fabric. The dynamic mechanical behavior of the APTES-modified resin based composites indicates improved interfacial adhesion. The composites prepared from modified epoxy resin exhibited a twofold increase in impact resistance. The improved adhesion between the fiber and modified resin was also visible from the scanning electron microscope analysis of the impact fracture surface. There was less influence of resin modification on the flexural properties of the composites. The 5% APTES modification induced early degradation of composites compared to all other composites. The burning rate of all the composites under study is rated to be satisfactory for use in automotive interior applications.
EXT="Skrifvars, Mikael"
Research output: Contribution to journal › Article › Scientific › peer-review
Since the discovery of microbiological metal dissolution, numerous biohydrometallurgical approaches have been developed to use microbially assisted aqueous extractive metallurgy for the recovery of metals from ores, concentrates, and recycled or residual materials. Biohydrometallurgy has helped to alleviate the challenges related to continually declining ore grades by transforming uneconomic ore resources to reserves. Engineering techniques used for biohydrometallurgy span from above ground reactor, vat, pond, heap and dump leaching to underground in situ leaching. Traditionally biohydrometallurgy has been applied to the bioleaching of base metals and uranium from sulfides and the biooxidation of sulfidic refractory gold ores and concentrates before cyanidation. More recently the interest in using bioleaching for oxide ore and waste processing, as well as extracting other commodities such as rare earth elements has been growing. Bioprospecting, adaptation, engineering and storing of microorganisms has increased the availability of suitable biocatalysts for biohydrometallurgical applications. Moreover, the advancement of microbial characterisation methods has increased the understanding of microbial communities and their capabilities in the processes. This paper reviews recent progress in biohydrometallurgy and microbial characterisation.
EXT="Kaksonen, Anna H."
Research output: Contribution to journal › Article › Scientific › peer-review
The H2020 BIOMOre project (www.biomore.info, Grant Agreement #642456) tests the feasibility of in situ bioleaching of copper in deep subsurface deposits in the Rudna mine, Poland. Copper is leached using biologically produced ferric iron solution, which is recycled back to the in situ reactor after re-oxidation by iron-oxidizing microorganisms. From a post operational point of view, it is important that the biological processes applied during the operation can be controlled and terminated. Our goal was to determine the possibility to use natural saline mine water for the inactivation of the introduced iron-oxidizing microorganisms remaining in the in situ reactor after completion of the leaching process of the ore block. Aerobic and anaerobic microcosms containing acid-leached (pH 2) sandstone or black shale from the Kupferschiefer in the Rudna mine were further leached with the effluent from a ferric iron generating bioreactor at 30 °C for 10 days to simulate the in situ leaching process. After the removal of the iron solution, residing iron-oxidizing microorganisms were inactivated by filling the microcosms with chloride-rich water (65 g L−1 Cl‐) originating from the mine. The chloride-rich water irreversibly inactivated the iron-oxidizing microorganisms and showed that the naturally occurring saline water of the mine can be used for long-term post process inactivation of bioleaching microorganisms
Research output: Contribution to journal › Article › Scientific › peer-review
Using continuous-wave optical pumping of a spin-VCSEL at room temperature, we find high spin amplification of the pump close to threshold within the communications wavelength window, here at 1300 nm. This facilitates a strong switch from left to right circularly polarised light emission, which has potential applications in polarisation encoding for data communications. We use a simple spin flip model to fit the experimental results and discuss the VCSEL parameters that affect this amplification.
Research output: Contribution to journal › Article › Scientific › peer-review
In this work, we have investigated the structural and optical properties of GaAs(1-x)Bix/GaAs single quantum wells (QWs) grown by molecular beam epitaxy on GaAs (311)B substrates using x-ray diffraction, atomic force microscopy, Fourier-transform Raman (FT-Raman) and photoluminescence spectroscopy techniques. The FT-Raman results revealed a decrease of the relative intensity ratio of transverse and longitudinal optical modes with the increase of Bi concentration, which indicates a reduction of the structural disorder with increasing Bi incorporation. In addition, the PL results show an enhancement of the optical efficiency of the structures as the Bi concentration is increased due to important effects of exciton localization related to Bi defects, nonradiative centers and alloy disorder. These results provide evidence that Bi is incorporated effectively into the QW region. Finally, the temperature dependence of the PL spectra has evidenced two distinct types of defects related to the Bi incorporation, namely Bi clusters and pairs, and alloy disorder and potential fluctuation.
Research output: Contribution to journal › Article › Scientific › peer-review
Glasses with the composition (75 NaPO3-(25-x) CaO-xCaF2) (in mol %) were prepared with 0.15 mol% of Er2O3. The effect of the glass composition and of heat treatment on the spectroscopic properties of the newly developed glasses is reported. With the progressive replacement of CaO by CaF2, the Er3+:4I13/2 lifetime and the intensity of the upconversion emission increase whereas the intensity of the emission at 1.5 μm decreases due to the decrease in the phonon energy in the as-prepared glasses. The glasses were heat treated at 20 °C above their respective glass transition temperature for 17 h to form nuclei and then at their crystallization temperature from 15min to 1 h to grow the nuclei into crystals. The heat treatment leads to the precipitation of crystalline phases, the composition of which depends upon the glass composition. As the Er3+:4I13/2 lifetime increases and the intensity of the upconversion increases for the glass with x = 0 after heat treatment, the Er3+ ions are expected to be incorporated into the phosphate-based crystals. However, as the shape of the emission band at 1.5 μm remains unchanged and the intensity of the upconversion decreases significantly after heat treatment of the glasses with x > 10, the crystals found in the glass-ceramics with x > 10 are thought to free of Er3+ ions. Although Er3+ ions entered in the CaF2 crystals precipitating in aluminosilicate glass, the Er3+ ions are believed to remain in the amorphous phosphate part of the glass-ceramic containing CaF2 crystals.
Research output: Contribution to journal › Article › Scientific › peer-review
Decreasing crystal size to nanoscale is a proven method to enhance material properties. In this study, nanosize Cr3C2 and Cr3C2-Ni were synthetized and the reaction sequence was studied. Aqueous precursors using only water-soluble raw materials with varying carbon contents and a nickel addition were spray-dried. Glycine was used as a carbon source and chromium acetate hydroxide as a chromium source in the precursor solutions. Nickel nitrate hexahydrate was introduced as a nickel source to yield a metallic binder into the carbide nanopowder.Resulting powders were heat-treating to identify an applicable precursor composition producing the targeted Cr3C2 phase with crystal size of tens of nanometers. Thermal synthesis tests of the precursor powders to yield Cr3C2 took place at a temperature between 900 and 1300 °C under an Argon atmosphere. The synthesis of nanosize Cr3C2-Ni powder was successful at 1000 °C in 30 min, in a case of the best precursor. In order to produce the carbide phase with no residual oxide traces, relative carbon load has to be 48 wt%, while the stoichiometric amount of carbon in Cr3C2 is 13 wt%. When also introducing the nickel source into the precursor, an even higher carbon load was required. The carbon surplus needed to enable the Cr3C2 synthesis attributes to the non-homogeneity of the precursor composition.The chemical synthesis starting from water-soluble raw materials is a promising way of preparing nanosize Cr3C2-Ni with the targeted phase configuration.
EXT="Vuorinen, Tommi"
EXT="Lagerbom, Juha"
EXT="Kaunisto, Kimmo"
Research output: Contribution to journal › Article › Scientific › peer-review
Customized square grid arrangements of different groove depths (1.0, 1.5 and 3.0 μm) and separations (10 and 30 μm) were successfully laser patterned, using a nanosecond pulsed fibre laser, on the surface of 10 mol% ceria-stabilized zirconia and alumina (10CeTZP-Al2O3) nanocomposite discs (diameter: 10 mm; thickness: 1.5 mm). The patterned surfaces and the in vitro biological response of osteoblasts (SAOS-2) towards them were thoroughly analysed. In terms of composition, the laser treatment was found to cause superficial monoclinic-tetragonal zirconia phase transformation and alumina evaporation. In vitro, the most effective grid configuration for osseous differentiation was found to be 1.5 μm groove depth and 10 μm groove separation, and confocal microscopy revealed that the cells show a tendency to be sorted as groove depth increases. It is thought that custom-made patterns could be produced to guide cell attachment in vivo, which could favour implant integration and reduce healing time.
Research output: Contribution to journal › Article › Scientific › peer-review
We report our findings on the impact of the glass composition on the corrosion of microparticles occurring during the preparation of glass-ceramics using the direct doping method. Microparticles (MPs) with the composition Sr4Al14O25:Eu2+,Dy3+ with blue-green persistent luminescence were chosen as the changes in their spectroscopic properties can be related to the MPs’ corrosion. The MPs were added in phosphate-based glasses with different compositions. When using the same doping parameters, the glass system with the composition 90NaPO3-10Na2O (mol%) was found to be the least corrosive on the MPs whereas the glass system with the composition 90NaPO3-10NaF (mol%) is the most corrosive on the MPs probably due to their different viscosity at 575 °C, the temperature at which the MPs are added in the glass melts.
Research output: Contribution to journal › Article › Scientific › peer-review
We present the results of longitudinal carrier transport under a high electrical field in n- and p-type modulation-doped Ga0.68In0.32NyAs1-y/GaAs (y = 0.009, 0.017) quantum well (QW) structures. Nitrogen composition-dependent drift velocities of electrons are observed to be saturated at and at 77 K for the samples with y = 0.009 and y = 0.017, respectively, while the drift velocities of holes do not saturate but slightly increase at the applied electric field in the range of interest. The hole drift velocity is observed to be higher than the electron drift velocity. The electron mobility exhibits an almost temperature-independent characteristic. On the other hand, the hole mobility exhibits a conventional temperature dependence of modulation-doped QW structures. As the temperature increases, the drift velocity of the electrons exhibits an almost an temperature-insensitive characteristic, but, on the other hand, for holes, drift velocity decreases approximately from 107-106 cm s-1. It is observed that the drift velocities of electrons and holes are N-dependent and suppressed at higher electric fields. Furthermore, experimental results show that there is no evidence of negative differential velocity (NDV) behaviour for both n- and p-type samples. To explore the observed electron and hole drift velocity characteristic at high electric fields, we use a simple theoretical model for carrier transport, which takes into account the effect of non-drifting hot phonons. The mobility mapping technique (comparison method) is used to extract hot hole temperature in order to employ it in the non-drifted phonon distribution and to obtain the drift velocity-electric field curves. Then hot electron temperatures are obtained from the drift velocity-electric field curves as a fit parameter using non-drifted hot phonon dynamics. The analytical model is well-matched to the experimental -E curves, indicating that carrier-hot phonon scattering is the main reason for suppressing the NDV mechanism in GaInNAs/GaAs QW structures with a carrier density higher than 1017 cm-3.
Research output: Contribution to journal › Article › Scientific › peer-review
Binding affinities and stoichiometries of Na+ and Ca2+ ions to phospholipid bilayers are of paramount significance in the properties and functionality of cellular membranes. Current estimates of binding affinities and stoichiometries of cations are, however, inconsistent due to limitations in the available experimental and computational methods. In this work, we improve the description of the binding details of Na+ and Ca2+ ions to a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer by implicitly including electronic polarization as a mean field correction, known as the electronic continuum correction (ECC). This is applied by scaling the partial charges of a selected state-of-the-art POPC lipid model for molecular dynamics simulations. Our improved ECC-POPC model reproduces not only the experimentally measured structural parameters for the ion-free membrane, but also the response of lipid headgroup to a strongly bound cationic amphiphile, as well as the binding affinities of Na+ and Ca2+ ions. With our new model, we observe on the one side negligible binding of Na+ ions to POPC bilayer, while on the other side stronger interactions of Ca2+ primarily with phosphate oxygens, which is in agreement with the previous interpretations of the experimental spectroscopic data. The present model results in Ca2+ ions forming complexes with one to three POPC molecules with almost equal probabilities, suggesting more complex binding stoichiometries than those from simple models used to interpret the NMR data previously. The results of this work pave the way to quantitative molecular simulations with realistic electrostatic interactions of complex biochemical systems at cellular membranes.
EXT=”Martinez-Seara, Hector”
EXT="Ollila, O. H. Samuli"
Research output: Contribution to journal › Article › Scientific › peer-review
This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.
EXT="Murtomäki, J."
Research output: Contribution to journal › Article › Scientific › peer-review
The enzyme catechol-O-methyltransferase (COMT) has water soluble (S-COMT) and membrane associated (MB-COMT), bitopic, isoforms. Of these MB-COMT is a drug target in relation to the treatment of Parkinson's disease. Using a combination of computational and experimental protocols, we have determined the substrate selection mechanism specific to MB-COMT. We show: (1) substrates with preferred affinity for MB-COMT over S-COMT orient in the membrane in a fashion conducive to catalysis from the membrane surface and (2) binding of COMT to its cofactor ADOMET induces conformational change that drives the catalytic surface of the protein to the membrane surface, where the substrates and Mg2+ ions, required for catalysis, are found. Bioinformatics analysis reveals evidence of this mechanism in other proteins, including several existing drug targets. The development of new COMT inhibitors with preferential affinity for MB-COMT over S-COMT is now possible and insight of broader relevance, into the function of bitopic enzymes, is provided.
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally sprayed hard metal coatings are the industrial standard solution for numerous demanding applications to improve wear resistance. In the aim of improving coating quality by utilising finer particle size distributions, several approaches have been studied to control the spray temperature. The most viable solution is to use the modern high velocity air-fuel (HVAF) spray process, which has already proven to produce high-quality coatings with dense structures. In HVAF spray process, the particle heating and acceleration can be efficiently controlled by changing the nozzle geometry. In this study, fine WC-10Co4Cr and Cr3C2-25NiCr powders were sprayed with three nozzle geometries to investigate their effect on the particle temperature, velocity and coating microstructure. The study demonstrates that the particle melting and resulting carbide dissolution can be efficiently controlled by changing the nozzle geometry from cylindrical to convergent–divergent. Moreover, the average particle velocity was increased from 780 to over 900 m/s. The increase in particle velocity significantly improved the coating structure and density. Further evaluation was carried out to resolve the effect of particle in-flight parameters on coating structure and cavitation erosion resistance, which was significantly improved in the case of WC-10Co4Cr coatings with the increasing average particle velocity.
Research output: Contribution to journal › Article › Scientific › peer-review
Stellite-6 coatings were deposited onto AISI 304 stainless steel substrate by gas-fueled HVOF spraying, systematically varying the process parameter settings. By operating the HVOF torch with a fuel-rich mixture, dense coatings (<1% porosity) are produced, containing up to ≈3 vol% oxide inclusions. A substantial amount of a Cr-rich f.c.c. phase is found, mainly produced by quenching of molten lamellae, and distinct from the equilibrium, Co-based f.c.c. solid solution retained in unmelted particles. These coatings exhibit pseudo-passive behavior and survive 5 cycles (100 h) of the Corrodkote test (ASTM B380-97) with no substrate corrosion. Coatings obtained from oxygen-rich mixtures, on the other hand, contain fewer oxide inclusions but also greater porosity, and do not protect the substrate against corrosion. The wear behavior of the coatings is less influenced by deposition conditions. In ball-on-disk dry sliding tests, all coatings exhibit wear rates of 2–3 × 10−5 mm3/(N·m), higher than those reported for bulk or clad Stellite, because of interlamellar delamination. Strain-induced, “martensitic” phase transformation from the f.c.c. structure to a h.c.p. one is observed over a 1–2 μm depth below the contact surface. Additional tribo-oxidation is onset when frictional heat dissipation has heated the wear debris enough to trigger its reaction with the environment. Correspondingly, a transition to a regime of higher friction occurs (from ≈0.6 to ≈0.8). At 400 °C, lamellar delamination is suppressed but wear rates rise to 5–8 × 10−5 mm3/(N·m) because of abrasive and adhesive wear. At 800 °C, a dense “glaze” tribofilm is formed by sintered debris particles, firmly bonded to a thermally grown oxide scale on the underlying metal surface. The “glaze” protects the coating, lowering the wear rate to ≈1 × 10−5 mm3/(N·m) and the friction coefficient to <0.45. Under high-stress particle abrasion conditions, wear rates of ≈1 × 10−3 mm3/(N·m) are found.
Research output: Contribution to journal › Article › Scientific › peer-review
Photoisomerization of azobenzene derivatives is a versatile tool for devising light-responsive materials for a broad range of applications in photonics, robotics, microfabrication, and biomaterials science. Some applications rely on fast isomerization kinetics, while for others, bistable azobenzenes are preferred. However, solid-state materials where the isomerization kinetics depends on the environmental conditions have been largely overlooked. Herein, an approach to utilize the environmental sensitivity of isomerization kinetics is developed. It is demonstrated that thin polymer films containing hydroxyazobenzenes offer a conceptually novel platform for sensing hydrogen-bonding vapors in the environment. The concept is based on accelerating the thermal cis-trans isomerization rate through hydrogen-bond-catalyzed changes in the thermal isomerization pathway, which allows for devising a relative humidity sensor with high sensitivity and quick response to relative humidity changes. The approach is also applicable for detecting other hydrogen-bonding vapors such as methanol and ethanol. Employing isomerization kinetics of azobenzenes for vapor sensing opens new intriguing possibilities for using azobenzene molecules in the future.
Research output: Contribution to journal › Article › Scientific › peer-review
Two experimental agglomerated and sintered (a&s) feedstock powders were prepared, in order to reveal the role of WC addition on the microstructure, hardness, and the abrasion resistance of HVOF-sprayed Cr3C2-NiCr coatings. These powders contained 10 wt.% of sub-micron WC, 20 or 10 wt.% of nickel binder, and Cr3C2 as balance. Experimental coatings were deposited by a liquid fueled high velocity oxygen-fuel (HVOF) spray process and subsequently heat treated at 800 °C for 8 h to simulate elevated temperature service conditions. The microstructures of the powders and coatings were studied by SEM and X-ray diffraction, and the hardnesses of coatings were probed by means of micro and nanoindentation. In addition, the high stress abrasion resistance was tested in a temperature range from room temperature up to 800 °C. The microstructural characterization of the coatings displayed the presence of WC and tungsten containing Cr3C2 grains. The coating hardness increased after heat treatment, which stemmed from precipitation of secondary carbides and solid solution strengthening of the binder by tungsten. In addition, the study revealed that both experimental coatings have high wear resistance at room and elevated temperatures.
Research output: Contribution to journal › Article › Scientific › peer-review
Regenerative medicine, especially cell therapy combined with a supportive biomaterial scaffold, is considered to be a potential treatment for various deficits in humans. Here, we have produced and investigated the detailed properties of injectable hydrazone crosslinked hyaluronan-polyvinyl alcohol (HA-PVA) and alginate-polyvinyl alcohol (AL-PVA) hydrogels to be used as a supportive biomaterial for 3D neural cell cultures. To the best of our knowledge, this is the first time the polymerization and properties of hydrazone crosslinked AL-PVA hydrogel have been reported. The effect of the degree of substitution and molecular weight of the polymer components as well as the polymer concentration of the hydrogel on the swelling, degradation and mechanical properties of the hydrogels is reported. Furthermore, we studied the effect of the above parameters on the growth of human pluripotent stem cell-derived neuronal cells. The most neural cell supportive HA-PVA hydrogel was composed of high molecular weight HA component with brain-mimicking mechanical properties and decreased polymer concentration. AL-PVA hydrogel, with stiffness quite similar to brain tissue, was also shown to be similarly supportive. Neuronal spreading and 3D network formation was enhanced inside the softest hydrogels.
Research output: Contribution to journal › Article › Scientific › peer-review
For the development of intelligent vehicle tires, especially for future self-driving cars, suitable strain sensors are mandatory. The design of such a strain sensor must fulfil several criteria, most important of all, it must be easily mounted or implanted into the tire and the elastic nature of the sensors must be synchronized with the deformation behaviour of the tire. To our knowledge, we evaluate for the first time, the piezoresistive characteristics of a composite developed from tire rubber, taking into account the morphology (distribution and dispersion of the fillers), filler network structure, crosslinking density and the stiffness (hardness) of the rubber matrix. We use a commercially available synthetic solution polymerized styrene butadiene rubber (SSBR) which is widely used in modern car tire industries. As the internal structure of the filler particles can rearrange or alter during deformation, it is extremely important to study the piezo-resistive performance with respect to crosslinking density, hardness and modulus of the rubber composites in details. The present paper focusses on the development of strain sensors by exploiting conductive elastomeric composites based on SSBR with conducting carbon fillers like carbon black and carbon nanotubes. The sensors can be stretched to several hundred percent of their original length and a sensitivity could be achieved as much as ∼1000 (gauge factor) in a given strain regime of ∼100%, while maintaining the mechanical robustness. Some of the mechanical properties like tensile strength (∼20 MPa), and modulus at 100% elongation are found to be quite satisfactory indicating the suitability of the materials for real applications.
Research output: Contribution to journal › Article › Scientific › peer-review
Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O- species within a-TiO2 that are essentially electronic defects in the anionic framework.
Research output: Contribution to journal › Article › Scientific › peer-review
A sol-gel transformation of liquid silica precursor to solid silica particles was carried out in a one-pot synthesis way, where a solution of styrene butadiene elastomer was present. The composites, thus produced, offered remarkable improvements of mechanical and dynamic mechanical performances compared to precipitated silica. The morphological analysis reveals that the alkoxy-based silica particles resemble a raspberry structure when the synthesis of the silica was carried out in the presence of polymer molecules and represent a much more open silica-network structure. However, in the absence of the polymer, the morphology of the silica particles is found to be different. It is envisaged that the special morphology of the in situ synthesized silica particles contributes to the superior reinforcement effects, which are associated with a strong silica-rubber interaction by rubber chains trapped inside the raspberry-like silica aggregates. Therefore, the interfaces are characterized in detail by low-field solid-state 1H NMR spectroscopy, 29Si solid-state NMR spectroscopy, and energy-dispersive X-ray spectroscopy. Low-field 1H NMR-based double-quantum experiments provide a quantitative information about the cross-link density of the silica-filled rubber composites and about the influence of silane coupling agent on the chemical cross-link density of the network and correlates well with equilibrium swelling measurements. The special microstructure of the alkoxy-based silica was found to be associated with the interaction between alkoxy-based silica and rubber chains as a consequence of particle growth in the presence of rubber chains.
Research output: Contribution to journal › Article › Scientific › peer-review
High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM) unit equipped with an energy dispersive X-ray (EDX) microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20-700 °C.
Research output: Contribution to journal › Article › Scientific › peer-review
Photoresponsive liquid crystals (LCs) whose alignment can be controlled with UV-Visible light are appealing for a range of photonic applications. From the perspective of exploring the interplay between the light response and the self-assembly of the molecular components, supramolecular liquid crystals are of particular interest. They allow elaborating the structure-property relationships that govern the optical performance of LC materials by subtle variation of the chemical structures of the building blocks. Herein we present a supramolecular system comprising azophenols and stilbazoles as hydrogen-bond donors and acceptors, respectively, and show that ortho-fluorination of the azophenol dramatically increases the thermal stability of the LC phases, an important characteristics in their further utilization in photonics. The systems exhibit fast photoinduced order-disorder transitions, and rapid recovery of the liquid-crystalline state once the light irradiation is ceased, due to the photochemical properties of azophenols.
Research output: Contribution to journal › Article › Scientific › peer-review
Dielectric elastomers are materials often utilized for the fabrication of electroactive actuators. Acrylic rubber (ACM) is very widely used in dielectric elastomer actuators (DEAs). However, its overall good performance is limited by the high operating electric field required. In the present work, we compare the effect of different types of conventionally used carbon black (CB) as well as other carbon-based fillers on the dielectric and actuation properties of ACM in order to show that performance of DEAs can be improved by the development of ACM composites. Indeed, addition of CB, carbon nanotubes (CNTs), and synthetic graphite leads to an increase in the relative dielectric permittivity of elastomeric material. Moreover, incorporation of nanodiamonds results in reduction of dielectric losses. Finally, actuation stress is remarkably improved by CNTs and different grades of CB.
Research output: Contribution to journal › Article › Scientific › peer-review
The modification of epoxy resin by 3-aminopropyltriethoxysilane (APTES) to improve the tensile properties of warp knitted viscose fabric composites is reported in this study. The study evaluates the efficiency of modification methods adopted to modify the epoxy resin and the influence of the resin modification on various properties of the cured castings. The influence of matrix resin modification on the tensile properties of viscose fabric composite is compared to those prepared from chemically modified fibre. The efficiency of the modification was determined through titration method to determine the epoxide content of epoxy resin, viscosity measurement and FTIR. The effect of APTES modification on various properties of cured castings is studied through differential scanning calorimeter, contact angle measurement and tensile testing. The addition of APTES into the epoxy resin decreased the epoxide content in the resin as evident from the titration method. The tensile strength of cured castings decreased after the resin modification. The tensile strength and elongation at break of the viscose fabric composites prepared from modified resin, increased up to 14 and 41%, respectively. The improved adhesion of APTES-modified epoxy resin to the viscose fibre is confirmed from SEM analysis of tensile fracture surface.
EXT="Skrifvars, Mikael"
Research output: Contribution to journal › Article › Scientific › peer-review
In this paper, we demonstrate that persistent luminescent bodies can be obtained by carefully choosing the sintering temperatures and duration. A borosilicate and a phosphate glasses were sintered into bodies with persistent luminescent (PeL) SrAl2O4:Eu2+,Dy3+ microparticles which have a green emission up to tens of hours after ceasing irradiation. When sintered at high temperature for a short time or at lower temperature for a longer time, a decrease in the PeL from the bodies was observed and was related to the glasses crystallization. A decrease in the PeL from the bodies was also observed after immersion in simulated body fluid and was related to the mineralization of the sintered bodies. Therefore, we clearly show that by tracking the changes in the PeL overtime, these PeL bodies have a real potential application as biophotonic sensors to track dissolution and mineralization of the implant in the body.
Research output: Contribution to journal › Article › Scientific › peer-review
This work studies FeVCrC-based coatings as potential alternatives to conventional Ni- and Co-based alloys for wear protection. Specifically, the microstructure and tribological properties of the coatings are characterized as a function of the particle size distribution of the feedstock powder, of the deposition technique – High Velocity Oxygen-Fuel (HVOF) or High Velocity Air-Fuel (HVAF) spraying – and of specific processing parameters. HVOF-sprayed coatings obtained from fine feedstock powder exhibit numerous oxide inclusions, which provide high hardness (≈ 900 HV0.3) but do not excessively impair fracture toughness, as determined through scratch testing techniques. HVAF-sprayed coatings obtained from the same feedstock powder contain much fewer oxide inclusions, and some of them possess simultaneously high hardness and high toughness. Defects (e.g. speckles) are instead formed in case unsuitable HVAF torch hardware is employed. A coarse feedstock powder always results in unmelted inclusions, which impair the cohesion of the coatings, particularly of the HVAF-sprayed ones. Most coatings anyway exhibit very low sliding wear rates < 3 × 10−6 mm3/(N m); abrasive grooving and surface fatigue-induced pitting are the main wear mechanisms. Oxide inclusions do not affect negatively the response of HVOF coatings, whereas too many unmolten particles increase pitting under severe test conditions. Rubber-wheel abrasion testing produces comparatively more severe grooving.
Research output: Contribution to journal › Article › Scientific › peer-review
Unsymmetrical diynes containing N-arylcarbamate groups in the hydrophobic part and hydroxymethylene groups in the hydrophilic part of the molecules were synthesized and studied. The Langmuir monolayer formation process was followed by Brewster angle microscopy (BAM). The Langmuir-Schaefer monolayer films, transferred on solid substrates (quartz or Si), were investigated by absorption spectroscopy and atomic force microscopy (AFM). Four substances had 2 methylene groups in the hydrophilic part of the molecule (n) and 4 or 5 of these groups in the hydrophobic part (m). At the same time the aryl substituent had a hydrogen atom or a MeO group in the p-position of the benzene ring. After 20 min of UV irradiation the initially colorless monomeric films of all four compounds turned into stable blue phase polymeric films. The blue phase is unusual for alcoholic diacetylene derivatives. The BAM and AFM measurements demonstrated higher homogeneity of the films with a MeO group in the aryl substituent in comparison to the molecules with a hydrogen atom. The reasons for these different structural organizations as well as potential applications of stable blue phase polydiacetylene thin films are discussed.
EXT="Alekseev, Alexander"
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally-sprayed ceramic coatings are commonly used in applications where high wear and corrosion resistance are essential. However, their inherently low toughness and resistance to impacts often limit their use. In bulk ceramics, the toughening effect of ZrO2 has been successfully implemented in different compositions of Al2O3-ZrO2. Successful toughening leads to increased wear resistance and higher reliability. In this study, APS- and HVOF-sprayed Al2O3-40ZrO2 coatings were characterized with SEM and XRD techniques. The toughness of the coatings was evaluated by measuring their strain tolerance with in-situ (SEM) three-point-bending and macroscopic four-point bending with acoustic emission instrumentation. The APS-coatings had a higher strain-to-fracture but failed abruptly. In HVOF-coatings, the cracking commenced earlier but proceeded slower with more crack deflections. The observed behaviour is likely to derive from the coarser microstructure of the APS-coatings, which allows strain distribution in a larger area unlike the finer structure with a lesser melting degree of the HVOF-coatings.
Research output: Contribution to journal › Article › Scientific › peer-review
Yb3+ doped silica sol-gel glass powders were prepared with different concentrations of SiO2, Al2O3 and P2O5 in order to understand the impact of the glass composition on the Yb3+ emission properties. In this paper, we clearly show that not only the Al/P ratio but also the SiO2 content have an impact on the Yb3+ spectroscopic properties. Our results provide new insight on the real impact of the composition on the spectroscopic properties of Yb3+ doped sol-gels: we demonstrate that an increase in the Al2O3 content at the expense of P2O5 leads to an increase in the intensity of the emission at 1000nm of the Yb3+ ions whereas an increase in the SiO2 content decreases it. We clearly showed that the inexpensive sol-gel approach can be easily used when investigating new Yb3+ doped silica glasses.
Research output: Contribution to journal › Article › Scientific › peer-review
In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.
Research output: Contribution to journal › Article › Scientific › peer-review
This study demonstrates (bio)electrochemical tetrathionate (S4O6 2 −) degradation with simultaneous elemental copper recovery from simulated acidic mining water. The effect of applied external voltage on anodic tetrathionate removal, cathodic copper removal and current density was studied using two-chamber flow-through bioelectrochemical (MEC) and abiotic electrochemical (EC) systems. At low applied cell voltages (≤ 0.5 V), the highest tetrathionate removal rate (150–170 mg L− 1 d− 1) and average current density (15–30 mA m− 2) was obtained with MEC. At applied external voltages above 0.75 V, abiotic EC provided the highest average current density (410–3600 mA m− 2). In bioelectrochemical systems, the current generation likely proceeds via intermediary reaction products (sulfide and/or thiosulfate), while in electrochemical system tetrathionate is oxidized directly on the electrode. The copper removal rates remained low (< 10 mg L− 1 d− 1) in all systems at applied cell voltages below 0.5 V, but increased up to a maximum of 440 mg L− 1 d− 1 in MEC and to 450 mg L− 1 d− 1 in EC at applied cell voltage of 1.5 V. After seven days of operation at applied cell voltage of 1.5 V, copper removal efficiency was 99.9% in both MEC and EC and the average tetrathionate removal rates were 160 mg L− 1 d− 1 and 190 mg L− 1 d− 1, respectively. This study shows that by applying external voltage, tetrathionate and copper can be efficiently removed from acidic waters with bioelectrochemical and electrochemical systems.
Research output: Contribution to journal › Article › Scientific › peer-review
Synthetic zinc patina was grown on galvanized steel sheets in supercritical carbon dioxide atmosphere. Different patina compounds were dissolved and quantified using a stepwise immersion and dissolution procedure. The distinct patina components, namely anhydrous zinc carbonate (a dense layer adjacent to metallic zinc) and zinc hydroxy carbonate (nanowires on the surface), were dissolved in glycine solutions, followed by quantification of Zn2+ in the solutes by X-ray fluorescence. The zinc hydroxy carbonate nanowires were readily glycine soluble, and the anhydrous zinc carbonate showed scarce glycine solubility, which enabled their selective quantification. The amount of the remaining (anhydrous) zinc carbonate after glycine extraction was determined from the glycine-soluble zinc oxide after calcination (heat treatment for 10 minutes at 350°C). The results were verified by scanning electron microscopy imaging and Fourier transform infrared spectroscopy measurements.
Research output: Contribution to journal › Article › Scientific › peer-review
A green-to-blue triplet-triplet annihilation upconversion of 24.5% quantum yield was achieved at a remarkably low 600 μM annihilator concentration in a viscous polymer matrix. This was made possible by utilizing a ZnTPP-based photosensitizer with exceptionally long 11 ms phosphorescence lifetime. Higher 3 mM annihilator concentration resulted in lower 24% upconversion quantum yield.
Research output: Contribution to journal › Article › Scientific › peer-review
Supercritical carbon dioxide (scCO2) treatment was employed for rapid formation of a zinc patina layer on hot dip galvanized (HDG) steel. In the presence of H2O and a Cu precursor, an artificial patina consisting of two distinctive phases was formed: a dense ~ 1 μm layer of anhydrous ZnCO3 adjacent to native zinc coating, and a needle-like porous structure showing resemblance to hydrozincite (Zn5(CO3)2(OH)6). The artificial patina layer significantly decreased the surface free energy of HDG, which was evidenced also by good wettability by a polyester melamine coating. Furthermore, the needle-like patina surface structure stayed intact through the coating process, indicating improved coating adhesion. ScCO2 treatment facilitates rapid and impurity-free surface treatment of hot dip galvanized steel, and could be used to tailor novel adhesion and corrosion promoting surface morphologies.
Research output: Contribution to journal › Article › Scientific › peer-review
Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: These complexes form the core of the polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving efficient gene delivery, forms a positively charged shell around the core polyplex. We investigated whether the exchange between the core and shell regions of PEI and PLL polyplexes takes place. Our results demonstrated a clear difference between the two studied polymers. Shell PEI can replace PEIs previously attached to DNA in the polyplex core, while PLL cannot. Such a dynamic structure of PEI polyplexes compared to a more static one found for PLL polyplexes partially explains the observed difference in the DNA transfection efficiency of these polyplexes. Moreover, the time-resolved fluorescence spectroscopy revealed additional details on the structure of PLL polyplexes: In between the core and shell, there is an intermediate layer where both core and shell PLLs or their parts overlap.
Research output: Contribution to journal › Article › Scientific › peer-review
Creating efficient water-borne dispersions based mainly on renewable materials for coating of flexible packaging paper was the aim of this study. The effects of an ethylene modified poly(vinyl alcohol) grade and a standard poly(vinyl alcohol) on the oxygen and water vapor barrier performance of corn starch and potato starch coatings was studied. The results showed that a coating composition with a high fraction of a renewable polymer was effective in keeping the oxygen barrier at a technically and commercially applicable level. An ethylene modified poly(vinyl alcohol) grade was found to provide lower oxygen transmission rates at high relative humidity, as compared to a standard poly(vinyl alcohol) grade. The oxygen barrier properties of blends of starch and poly(vinyl alcohol) were similar to that of the pure modified poly(vinyl alcohol) in the range from 0% starch to 60% starch. This was observed with both hydroxypropylated and octenyl succinate modified starch grades. The drying conditions of the mixed starch:poly(vinyl alcohol) coatings were based on drying trials with pure poly(vinyl alcohol) coatings. Drying at moderate temperatures indicated the possibility to slightly decrease water vapor transmission rate by higher drying temperature. Several secondary effects of increased drying temperature such as coating hold-out and formation of defects may also be of importance.
Research output: Contribution to journal › Article › Scientific › peer-review
In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial “hot” spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as “cold spots.” This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.
Research output: Contribution to journal › Article › Scientific › peer-review
Due to their good corrosion properties, fibre reinforced polymer composites are often used instead of metals for example in hydrometallurgical processes. However, the erosion performance of polymer composites is rather poor when compared to metals. This study focused on the effect of mineral fillers on the erosion performance of vinylester composites. The erosion rates were tested both in water and in acidic environments at high temperature. To improve the erosion performance of the filled composites in these environments, to increase the filler particle hardness was an effective method. Within similar filler materials, better adhesion to the matrix improved the erosion performance, regardless if it was achieved by adhesion promoters or better mechanical interlocking. The hardness of the matrix was found to be disadvantageous for filled composites, although for pure vinylesters higher hardness decreased erosion rate. At the high service temperature, softer matrix accommodated more deformations and better absorption of energy of the impacting erosive particles. Consequently, improved adherence of the filler particles into the matrix and slower erosion rate was observed.
INT=mol,"Sironen, Reija"
EXT="Lindgren, Mari"
Research output: Contribution to journal › Article › Scientific › peer-review
This paper presents a phase fluorimetric sensor for the monitoring of the oxygen concentration in in vitro cell models. The sensing surface of the sensor consists of oxygen sensitive fluorescent dyes (platinum(II) octaethylporphyrinketone) embedded in a thin polystyrene film. In order to optimize the optical read-out scheme of the sensor, we carried out electromagnetic simulations of a fluorescently doped polystyrene film deposited on a glass-water interface. The simulation results showed highly anisotropic angular emission distribution with the maximum irradiance being at super critical angles, which attracts tailored optical designs to maximize the fluorescence collection efficiency. For this purpose, we applied an efficient optical read-out scheme based on an in-contact parabolic lens. The use of parabolic lens also facilitates confocal total internal reflection excitation from the substrate side. This makes the excitation effective and insensitive to biofouling or other optical changes in the sensing surface and, more importantly, greatly reduces the amount of excitation power radiated into the cell culture chamber. Experimental results show that when applied together with phase fluorimetric lifetime sensing, this optical scheme allows one to use thin films (
Research output: Contribution to journal › Article › Scientific › peer-review
Starch and poly(vinyl alcohol) based barrier coatings for flexible packaging papers were studied. Both octenyl succinate modified and hydroxypropylated corn and potato starches were blended with regular and ethylene modified poly(vinyl alcohol) to increase the water vapor barrier properties and enhance the flexibility of the starch coatings, in order to accomplish superior barrier performance. Phase separation between starch and poly(vinyl alcohol) was studied in detail, both in the solution and in dry draw-down coatings on paper. The barrier performance of the coated paper was evaluated with respect to water vapor transmission rate. Conditions for the creation of a thin surface layer consisting of only one of the pure polymers were identified and discussed in terms of phase separation in solution migration of poly(vinyl alcohol) to the uppermost surface layer. The phase separation promoted low water vapor transmission rates also with a rather high fraction of starch in the coatings.
Research output: Contribution to journal › Article › Scientific › peer-review
Nanostructured zinc oxide, ZnO, films feature attractive functional properties, but their long-term stability needs further investigation. Here, ZnO thin films with well-aligned rod-like structure were grown on stainless steel substrate. The long-term chemical stability of the ZnO films was investigated in solutions with varying pH values (3 − 11) to enhance knowledge about the durability of films in acidic and basic environments. The solubility and stability of the films in the solutions were investigated using atomic absorption spectrophotometry, scanning electron microscopy imaging and energy-dispersive X-ray spectroscopy analyses, as well as by monitoring changes in water contact angle of the films and in the pH values of the solutions. The ZnO film was found to be most stable at highest pH value, with the amount of dissolved zinc being lowest among the studied pH values and the changes observed with other characterization methods being minor compared to the samples immersed to other solutions. At the lowest pH, the film was removed rapidly from the substrate by dissolution. In solutions featuring pH values 5 and 9, the measured pH was unstable and changed constantly until it reached the value 7.2–7.6, i.e., until the equilibrium of different chemical species in the solution was achieved. These results are presented and discussed in this paper from the viewpoint of applicability of the ZnO films.
Research output: Contribution to journal › Article › Scientific › peer-review
Localized deformation and cracking in a system of thermally sprayed hard metal coating overlaid on a low alloy steel is studied by means of bend testing. In-situ digital image correlation measurements are used to characterize material strain field near the coating/substrate interface. The studied substrate undergoes softening upon yielding which manifests itself as narrow bands of localized shear deformation. The measurements show that the coating cracks and the substrate shear bands interact. When the coating starts cracking during the elastic loading of the substrate, the formed cracks function as nucleation points for the shear bands. In contrast, if the coating resists cracking until the yielding of the substrate, the coating cracks and substrate shear bands form simultaneously. Based on the experiments, continuum-scale finite element model of the system is developed, validated and then used for a systematic numerical analysis of the effects of substrate shear banding on the measurement of coating properties. Based on the results of this work, three main effects can be identified. Firstly, the flow localization in the substrate can increase the measured apparent (macroscopic) surface strain of the coating, if not accounted for by using microscopic techniques. Secondly, substrate shear bands increase the interfacial loading, which may cause unexpected delamination of the coating and thus affect the evaluation of the interfacial strength. Finally, substrate shear bands affect the stress state within the coating and may thus affect the cracking morphology in the coating. Therefore, based on the results of this study, if the coating and interfacial strengths are of similar magnitude with the substrate yield strength, the possible tendency of the substrate towards flow localization should be taken into account in the analysis of the coating behavior.
Research output: Contribution to journal › Article › Scientific › peer-review
Design of the drill–bit and selection of the Cemented Tungsten Carbide (CC) grade for drill–bit inserts are crucial for efficient percussive drilling. This study presents the results of an experimental campaign executed with the aim to identify the distinctive wear mechanisms and behaviour of different CC grades. Three laboratory and one full–scale drilling tests were performed using nine CC grades with different binder contents, binder chemical compositions, mean tungsten carbide (WC) grain sizes, and grain size distributions. Wear traces found on the drill–bit inserts after the full–scale drilling test show noticeable differences depending on their position on the drill–bit. Tensile forces present on the leading edge of the inserts due to the sliding contact with rock are suspected to play a significant role. Laboratory tests performed include: (i) single impact tests using a modified Split Hopkinson Pressure Bar (SHPB) apparatus, (ii) Abrasion Value (AV) rotating disk tests, and (iii) impact abrasion (LCPC) tests. Volume loss and shape change were used as macroscopic measures of wear. Greater volume losses were found for the grades with nickel–based binders compared to those with pure cobalt binder. The use of a narrower WC grain size distribution leads to lesser volume loss in drilling and AV tests. Surface analysis of the damaged microstructure was performed using scanning electron microscope. Distinct meso–scale (few dozens of WC grain sizes) patterns of damaged microstructure zones surrounded by the intact surface were found on the surfaces of specimens after single impact test. The pattern indicates the potential influence of a non–uniform contact due to the rock roughness and internal rock heterogeneities, which is supported by the study of the rock crater roughness. Size of such zones could be seen as a certain length–scale, which determines the insert–rock contact behaviour. A specific “peeling” mechanism of material removal was observed in the full–scale drilling test, where portion of the CC microstructure fused with the rock tribofilm gets removed when that tribofilm peels off.
Research output: Contribution to journal › Article › Scientific › peer-review
The research on high-velocity air-fuel (HVAF)-sprayed Cr3C2-based materials has mostly focused on conventional Cr3C2-25NiCr composition. In this paper, two alternative compositions (Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCrFe) were sprayed with high-velocity oxy-fuel (HVOF) and HVAF spray processes to evaluate the material behavior during spraying and to provide characterization of the microstructures and mechanical properties of the coatings. For comparison, coatings from the Cr3C2-25NiCr composition were sprayed with both processes. Spray diagnostics were carried out to obtain average particle velocity and temperature for each material and process combinations. The measured average in-flight particle data were 1800 °C and 700 m/s for HVOF process, and 1450 °C and 900 m/s for HVAF process. Characterization of the coating microstructures was carried out by scanning electron microscopy and X-ray diffraction. In addition, the carbon content of the feedstock powders and sprayed coatings was measured with carbon analyzer. The results show that carbide rebounding or selective deposition of particles with higher metal matrix content is the dominating reason for carbide loss during HVAF spraying, while carbide dissolution is an additional source for the HVOF spraying. Higher particle velocities and controlled temperature measured for the HVAF process produced dense coatings with improved toughness and more homogenous coating structure.
Research output: Contribution to journal › Article › Scientific › peer-review
We introduce a novel strategy to quantify the disorder of extended water-water hydrogen-bond (HB) networks sampled in particle-based computer simulations. The method relies on the conformational clustering of the HB connectivity states. We successfully applied it to unveil the fine relationship among the protein dynamical transition in hydrated powder, which marks the activation of protein flexibility at Td ≈ 240 K, and the sudden increase in the configurational disorder of the water HB network enveloping the proteins. Our finding links, in the spirit of the Adam-Gibbs relationship, the diffusivity of protein atoms, as quantified by the hydrogen mean-square displacements, and the thermodynamic solvent configurational entropy.
Research output: Contribution to journal › Article › Scientific › peer-review
Dielectric elastomer actuators (DEAs) have been studied widely in recent years for artificial muscle applications, but their implementation into production is limited due to high operating voltages required. The actuation behavior of dielectric elastomer under an applied electric field is predicted by Maxwell's pressure and thickness strain equations. According to these equations, the best electromechanical response is achieved when the relative permittivity is high and elastic modulus is low. The potential source for additives increasing the relative permittivity of rubbers can be vegetable powders that have much higher dielectric constant than common elastomers. In the present research, the dielectric and actuation properties of polyacrylate rubber (ACM) were studied after the addition of different vegetable-based fillers such as potato starch, corn starch, garlic, and paprika. The results were compared to ACM filled with barium titanate. The compounds containing vegetable fillers showed higher relative dielectric permittivity at 1 Hz frequency than the compounds containing barium titanate due to higher interfacial polarization. The actuation studies showed that lower electric fields are required to generate certain actuation forces when the starches and garlic are used in the rubber instead of barium titanate. Therefore, the vegetable-based fillers can be used to improve actuation performance of DEAs.
INT=mol,"Poikelispää, Minna"
Research output: Contribution to journal › Article › Scientific › peer-review
A quench protection concept based on coupled secondary coils is studied for inductively transferring energy out of a quenching superconducting dipole and thus limiting the peak hotspot temperature. So-called 'quench absorption coils' are placed in close proximity to the superconducting coils and are connected in series with a diode for the purpose of preventing current transformation during regular operation. During a quench, current is then transformed into the quench absorption coils so that a significant fraction of the stored magnetic energy is dissipated in the these coils. Numerical calculations are performed to determine the impact of such a concept and to evaluate the dimensions of the quench absorption coils needed to obtain significant benefits. A previously constructed 15 T Nb3Sn block coil is taken as a reference layout. Finite-element calculations are used to determine the combined inductive and thermal response of this system and these calculations are validated with a numerical model using an adiabatic approximation. The calculation results indicate that during a quench the presence of the quench absorption coils reduces the energy dissipated in the superconducting coils by 45% and reduces the hotspot temperature by over 100 K. In addition, the peak resistive voltage over the superconducting coils is significantly reduced. This suggests that this concept may prove useful for magnet designs in which the hotspot temperature is a design driver.
Research output: Contribution to journal › Article › Scientific › peer-review
Crystals of trans- and cis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastable cis-isomer, allowing single crystals of the cis-azobenzene to be grown. Structural analysis on the cis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of the cis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both the trans- and cis-isomers. Due to the rarity of cis-azobenzene crystal structures in the literature, our paper makes a step towards understanding the role of non-covalent interactions in driving the packing of metastable azobenzene isomers. This is expected to be important in the future rational design of solid-state, photoresponsive materials based on halogen bonding. We show by single-crystal X-ray diffraction studies and computational analysis that halogen bonding can stabilize a metastable cis-azobenzene derivative in the solid state.
Research output: Contribution to journal › Article › Scientific › peer-review
Er-doped phosphate glasses were fabricated by melt-quenching technique. The changes in their thermal, structural and luminescence properties with the addition of Al2O3, TiO2 or ZnO were studied. Physical and thermal properties were investigated through density measurement and differential thermal analysis. Structural characterization was performed using the Raman and Infrared spectroscopy. In order to study the influence of the composition on the luminescence properties of the glasses, the refractive index, the luminescence spectra and the lifetime values were measured. The results show that with the addition of Al2O3 and TiO2 the phosphate network becomes more connected increasing the glass transition temperature, whereas the addition of ZnO does not show significant changes in the optical, thermal and structural properties but it leads to a larger emission cross-section at 1540 nm as compared to the other glasses. As the site of the Er3+ is not strongly affected by the change in the glass composition, we think that the emission properties of the glasses depend on the glass structure connectivity, which has an impact on the Er3+ ions solubility.
Research output: Contribution to journal › Article › Scientific › peer-review
Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabrication.
Research output: Contribution to journal › Article › Scientific › peer-review
Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet's current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor's critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.
Research output: Contribution to journal › Article › Scientific › peer-review
Expensive rare-earth elements used in neodymium-iron-boron permanent magnets can be partly replaced by a more abundant cerium without significantly compromising the magnetic properties. In this study, we investigated the effects that cerium addition has on the corrosion resistance of Nd-Fe-B magnets. The cerium-alloyed magnet grade was compared to two Ce-free magnet materials, a standard-grade Nd-Fe-B and a Co-alloyed magnet grade, with respect to microstructure and corrosion behaviour. The microstructure of the magnets was characterized by scanning electron microscopy, with the location of Ce being of primary interest. The magnets were exposed to electrochemical measurements and accelerated corrosion tests. Although the amount of the corrosion-sensitive grain-boundary phase was higher in the Ce-alloyed magnets than in the other two magnet grades, the overall corrosion behaviour was in many ways comparable to that of the Co-alloyed grade magnet, e.g., showing a slight increase in open circuit potential as compared to the standard grade magnet. In accelerated tests, corrosion of the Fe-rich phase was equal to the other magnet grades. Pulverization of the Ce-alloyed magnet was not detected during the accelerated tests, similarly to the Co-alloyed grade.
Research output: Contribution to journal › Article › Scientific › peer-review
Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally sprayed tungsten carbide (WC) and chromium carbide (Cr3C2) based hard metal coatings are commonly applied on component surfaces as corrosion and wear resistant layers. Typically, WC-Co/Ni with optional Cr addition and Cr3C2-25NiCr powders are sprayed with high velocity oxy-fuel (HVOF) or high velocity air-fuel (HVAF) processes. Due to the poor oxidation resistance of the WC particles, Cr3C2-25NiCr composition is typically selected for high temperature environments, up to 800-900°C. In this study, two distinct Cr3C2-based compositions of Cr3C2-50NiCrMoNb and Cr3C2-37WC-18NiCoCr were selected as interesting alternatives to conventional Cr3C2-25NiCr. Sliding wear behavior of the coatings sprayed with HVOF and HVAF processes were tested with a ball-on-disk configuration against an Al2O3 ball at room temperature and at 700°C. It was found that both alternative materials had comparable coefficients of friction with the Cr3C2-25NiCr coatings. The Cr3C2-37WC-18NiCoCr coatings provided improved wear resistance at room temperature conditions, but at 700°C the wear rate was increased to the level of the Cr3C2-50NiCrMoNb coatings. Cr3C2-25NiCr coatings experienced the lowest wear rates at elevated temperatures, which was even lower than at room temperature.
Research output: Contribution to journal › Article › Scientific › peer-review
Leaded tin bronze alloys are widely used in heavy machinery bearings operating in boundary and mixed lubrication regions due to the excellent dry lubrication properties of lead. However, restrictions on the use of lead have created an increasing demand for lead-free or low-lead bearing materials. In the present study, suitability of a novel bismuth bronze bimetal material for possible substitution of leaded tin bronze was studied with a special thrust bearing test device, which simulates the contact conditions in the main thrust bearing of mineral crushers. The oil-lubricated test bearings have a flat-on-flat type contact with oil grooves and a constant eccentric motion against a case hardened steel counter plate under a periodically increased axial pressure. The test was continued until a sudden rise in friction, which indicates bearing failure and risk of an imminent seizure. The bismuth bronze showed a load capacity of the same level with the reference material, continuously cast CuSn10Pb10. Characterization by electron microscopy showed that the dry-lubricating bismuth precipitations had a fine grain size and an even distribution, which explains the good load carrying capacity. It was concluded that the bismuth bronze has potential for substituting the leaded tin bronzes in the studied operating conditions.
Research output: Contribution to journal › Article › Scientific › peer-review
A method for monitoring changes in biodegradable polymers during hydrolysis is proposed. This wireless and non-destructive method is based on inductively coupled passive resonance sensors embedded in the polymer shell. In this study, we prepared specimens using two poly(lactide-co-glycolide) copolymers possessing different degradation profiles. The copolymer embedded sensors were immersed in buffer solution and their resonance features were compared with periodically performed conventional polymer characterization methods. A clear difference was noticed in the wirelessly measured signals between the two tested copolymer materials. Also the reference methods showed clear differences between the degradation profiles of the copolymers. The wirelessly measured signals are likely to correlate to the structural changes in the materials during the hydrolysis. In the future, this technique could be used in the laboratory to provide easy-to-access in situ information about the polymers. Even the state of biodegradable polymer implants could be wirelessly monitored.
Research output: Contribution to journal › Article › Scientific › peer-review
Adsorption of metal cations onto a cellular membrane changes its properties, such as interactions with charged moieties or the propensity for membrane fusion. It is, however, unclear whether cells can regulate ion adsorption and the related functions via locally adjusting their membrane composition. We employed fluorescence techniques and computer simulations to determine how the presence of cholesterol - a key molecule inducing membrane heterogeneity - affects the adsorption of sodium and calcium onto zwitterionic phosphatidylcholine bilayers. We found that the transient adsorption of sodium is dependent on the number of phosphatidylcholine head groups, while the strong surface binding of calcium is determined by the available surface area of the membrane. Cholesterol thus does not affect sodium adsorption and only plays an indirect role in modulating the adsorption of calcium by increasing the total surface area of the membrane. These observations also indicate how lateral lipid heterogeneity can regulate various ion-induced processes including adsorption of peripheral proteins, nanoparticles, and other molecules onto membranes.
Research output: Contribution to journal › Article › Scientific › peer-review
Chromium carbide-based coatings are commonly applied to protect surfaces against wear at high temperatures. This work discusses the influence of feedstock powder and spray torch selection on the microstructure and high-stress abrasion resistance of thermally sprayed Cr3C2-NiCr coatings. Four commercial feedstock powders with spherical morphology and different microstructures were deposited by different high-velocity spray processes, namely third-generation gas- and liquid-fueled HVOF torches and by the latest generation HVAF torch. The microstructures of the coatings were studied in the as-sprayed state and after various heat treatments. The high-stress abrasion resistance of as-sprayed and heat-treated coatings was tested at room temperature and at 800 °C. The study reveals that the selection of the spray torch mainly affects the room temperature abrasion resistance of the as-sprayed coatings, which is due to differences in the embrittlement of the binder phase generated by carbide dissolution. At elevated temperatures, precipitation and growth of secondary carbides yields a fast equalization of the various coatings microstructures and wear properties.
Research output: Contribution to journal › Article › Scientific › peer-review
In this paper, high-velocity oxy-fuel sprayed coatings from experimental Cr3C2-Ni powder produced by mechanically activated thermal synthesis and disintegrator milling are compared with coatings from commercial Cr3C2-NiCr powder under room- and elevated-temperature abrasive-erosive wear (AEW) conditions. In a room-temperature AEW test, the coating made from the experimental powder had wear rates that were 1.1-5.3 times higher than the coating from the commercial powder; this difference was the lowest at the highest impact velocity (80 m s−1). Under AEW tests at elevated temperature (300 and 550 °C), the coating made from the experimental powder exhibited wear rates that were 1.2-2.8 times higher in comparison with that made from the commercial powder, but this difference was smaller under an oblique impact angle (30°) and higher temperature conditions. The reasons for the lower resistance against AEW of the coating made from the experimental powder were found to be its lower ability to resist plastic indentation and deformation as well as lower indentation fracture toughness at room temperature, weaker bonding between the matrix and reinforcement and probably lower mechanical properties as well as unfavourable residual stresses at elevated temperatures.
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally sprayed coatings are strong candidates to be used for replacement of hard chromium – process which is regarded as an environmental risk – in many sliding surfaces for engineering applications such as hydraulic cylinders and aircraft landing gears. Recent advance in thermal spraying technology, based on the increase of the spray particle velocity, has led to improved coating quality. This study focuses on the fatigue performance of structural steel coated with Cr3C2[Formula presented] coating. Coating has been produced by using high kinetic HVOF thermal spray process. First, the coating was optimized for fatigue purposes by studying the residual stress generation. The optimized coating was selected for deposition of axial fatigue tests specimens, whose fatigue performance was compared to the uncoated steel specimens having different surface treatments (turning, polishing, and shot blasting) relevant for the target applications. The results showed that by using a high kinetic energy coating, the fatigue performance of Cr3C2[Formula presented] coated structural steel was clearly improved compared to uncoated steel of similar surface quality. Increased fatigue resistance of the coated material was attributed to the substantial compressive residual stresses that hindered crack initiation and that was caused by the high velocity spray particles during the coating process.
Research output: Contribution to journal › Article › Scientific › peer-review
Dielectric elastomers are promising materials for actuators resembling human muscle. Among elastomers, acrylic rubbers (ACM) have shown good actuation performance but its use is limited by the high operating voltages required. The present work demonstrates that simultaneous incorporation of nanostructured carbon black and dielectric fillers offers an increase in a dielectric permittivity and a suitable modulus of the elastomers matrix, enabling an improved electro-mechanical actuation performance at low voltages. By the use of reinforcing carbon black and barium titanate in an acrylic elastomer matrix a sixfold increase in the dielectric permittivity was realized. A fine tuning of the actuation stress and, consequently, actuation strain can be done by a judicial selection of the different filler concentrations in the soft rubber matrix. Finally, a synergistic effect of the fillers was observed in the improved actuation performance of the developed materials. This work may pave the way to design dielectric elastomers for actuator fabrication.
Research output: Contribution to journal › Article › Scientific › peer-review
Two austenitic stainless steel grades, 316L and 904L, and three duplex stainless steel grades, LDX 2101, 2205, and 2507, were erosion–corrosion tested as impeller blade materials for hydrometallurgical applications. Samples were attached to the pressure and suction sides of an impeller and were tested in 50 g/l H2SO4 and 0.5 g/l Fe2(SO4)3 for 72 h at 80°C and 95 °C in a small-scale reactor using quartz sand slurry. The results showed that under lower erosion intensity the ranking of the grades was similar to that in pure erosion. Under higher erosion intensity the ranking of the grades changed completely: lean alloys LDX 2101 and 316L suffered from the highest mass losses followed by 2205, 2507, and 904L. To clarify this behavior, the ability of the grades to repassivate was investigated with scratch tests. It was found that the ranking could be explained by the repassivation rates. The only exception was that 2507 showed a similar repassivation rate to 904L but its erosion–corrosion mass loss under higher erosion intensity was larger. One contributing factor to this was found to be the selective dissolution of the austenite phase of all the tested duplex grades. The prerequisites for the galvanic coupling between the phases that was responsible for the selective dissolution are discussed.
EXT="Lindgren, M."
Research output: Contribution to journal › Article › Scientific › peer-review
Zinc oxide films with three types of topographies: needle-like and hexagonal rods and flakes, were prepared by hydrothermal synthesis on stainless steel substrates to investigate their photocatalytic and antibacterial properties. The photocatalytic activity was measured with a methylene blue (MB) discoloration test, whereas a method using bioluminescent whole cell bacterial biosensors enabling the constant monitoring of the amount of living cells on the surfaces was used here to study the antibacterial properties. The results showed that photocatalytic activity was clearly influenced by the surface area, which is in turn dependent on the topography. Moreover, it was found that all the examined films decreased notably the amount of Staphylococcus aureus and Escherichia coli on the surfaces. Despite significant differences in the surface areas of the studied samples that led to different zinc dissolution rate in aqueous environment, no notable differences in antibacterial activity between the films with different morphologies could be detected. These results are presented and discussed in this paper.
Research output: Contribution to journal › Article › Scientific › peer-review
The interactions of two highly positively charged short peptide sequences with negatively charged lipid bilayers were explored by fluorescence binding assays and all-atom molecular dynamics simulations. The bilayers consisted of mixtures of phosphatidylglycerol (PG) and phosphatidylcholine (PC) lipids as well as a fluorescence probe that was sensitive to the interfacial potential. The first peptide contained nine arginine repeats (Arg9), and the second one had nine lysine repeats (Lys9). The experimentally determined apparent dissociation constants and Hill cooperativity coefficients demonstrated that the Arg9 peptides exhibited weakly anticooperative binding behavior at the bilayer interface at lower PG concentrations, but this anticooperative effect vanished once the bilayers contained at least 20 mol % PG. By contrast, Lys9 peptides showed strongly anticooperative binding behavior at all PG concentrations, and the dissociation constants with Lys9 were approximately 2 orders of magnitude higher than with Arg9. Moreover, only arginine-rich peptides could bind to the phospholipid bilayers containing just PC lipids. These results along with the corresponding molecular dynamics simulations suggested two important distinctions between the behavior of Arg9 and Lys9 that led to these striking differences in binding and cooperativity. First, the interactions of the guanidinium moieties on the Arg side chains with the phospholipid head groups were stronger than for the amino group. This helped facilitate stronger Arg9 binding at all PG concentrations that were tested. However, at PG concentrations of 20 mol % or greater, the Arg9 peptides came into sufficiently close proximity with each other so that favorable like-charge pairing between the guanidinium moieties could just offset the long-range electrostatic repulsions. This led to Arg9 aggregation at the bilayer surface. By contrast, Lys9 molecules experienced electrostatic repulsion from each other at all PG concentrations. These insights may help explain the propensity for cell penetrating peptides containing arginine to more effectively cross cell membranes in comparison with lysine-rich peptides.
Research output: Contribution to journal › Article › Scientific › peer-review
An investigation was made into the Barkhausen noise responses of three duplex grades: a lean alloy LDX 2101, a conventional duplex 2205 and a super duplex 2507, in welded conditions. The aim was to study the influence of alloy chemistry and microstructure on the Barkhausen noise response. In addition, the residual stresses of the grades were measured by X-ray diffraction and the microstructure and hardness of the base materials and welds were determined. It was observed that the Barkhausen noise responses in the rolling direction and in the transverse direction were governed by the phase morphology of the materials. Only the root mean square of the Barkhausen noise burst seemed to be additionally dependent on the alloy chemistry through the hardness of the materials. Furthermore, the relationships between various characteristics of the Barkhausen noise burst measured in the rolling direction and the transverse direction and microstructural features are discussed.
Research output: Contribution to journal › Article › Scientific › peer-review
High density polyethylene (rHDPE) is extruded 1 to 8 times, with and without detergent, to simulate the effects of impurities on the material and on the artificial ageing process. The mechanical properties, thermal stability, rheology, Fourier transform infrared spectroscopy (FTIR), and volatile organic compound (VOC) emissions are measured. According to the results, ageing of rHDPE increases tensile strength, reduces elongation, and enhances side chain branching of the material and thus causes rheological changes. The addition of detergent reduces changes in mechanical properties and rheological behavior but accelerates thermal degradation. VOC and FTIR measurements of the samples with detergent addition show generation of harmful 1,4-dioxane. The amount of total emission, as well as emissions of important perfumes limonene and 1R-α-pinene, decreases during multiple extrusion cycles. Heating of the plastics is found to be a major factor in the VOC emission reduction. Impurities have a notable effect on the artificial ageing results.
Research output: Contribution to journal › Article › Scientific › peer-review
Nano silica is generated in situ inside the uncrosslinked chloroprene rubber (CR) by the sol-gel reaction of tetraethoxysilane (TEOS). This results in appreciable improvement in mechanical properties of the CR composites at relatively low filler content. Furthermore, exploitation of reactive organosilanes, γ-aminopropyltrimethoxysilane (γ-APS) in particular, in the silica synthesis process facilitates growing of spherical silica particles with a size distribution in the range of 20-50 nm. The silica particles are found to be uniformly dispersed and they do not suffer from filler-filler interaction. Additionally, it is observed that the silica particles are coated by silane and rubber chains together which are popularly known as bound rubber. The existence of the bound rubber on silica surface has been supported by the detailed investigations with transmission electron microscopy (TEM), energy filtered transmission electron microscopy (EFTEM) and energy dispersive X-ray spectroscopy (EDAX). The interaction between rubber and silica, via bi-functionality of the γ-APS, has been explored by detailed FTIR studies.
Research output: Contribution to journal › Article › Scientific › peer-review
Solid topochemical photopolymerization (STP) of Langmuir-Schaefer films of a new class of unsymmetrical diynes, containing N-arylcarbamate groups in the hydrophobic part and hydroxymethylene groups in the hydrophilic part of the molecules was examined. In addition, the monomeric Langmuir monolayer formation was studied by Brewster angle microscopy and the surface morphology of monomer and polymer films on solid substrates were studied by scanning electron microscopy and atomic force microscopy. Three phases of polydiacetylene (PDA) (red, purple and blue) were observed after UV-light polymerization of above-mentioned films of alcohol diacetylene (DA) derivatives. The substitution of MeO group in the aryl ring substituent by hydrogen atom and the variation of the methylene group number in the hydrophobic part from 5 to 6 changed significantly the result of STP: instead of blue phase PDA observed for diynes with MeO group, the red phase PDA was observed for DA with H-atom from the very beginning of diyne film UV irradiation. For two other diynilic N-arylcarbamates of identical chemical structures except of the substituents in the aryl ring of hydrophobic parts of the molecules, no changes in the efficiency of polymerization or the position and shape of absorption bands were observed. This indicated the formation of the purple phase PDA. For these molecules, the number of methylene groups in hydrophobic and hydrophilic parts of the molecules was 9 and 2, respectively.
EXT="Alekseev, Alexander"
Research output: Contribution to journal › Article › Scientific › peer-review
Effect of CaF2 addition at the expense of CaO on the thermal, physical, optical and structural properties of glasses in the NaPO3-CaO system was studied. The glasses were prepared by the conventional melt quenching method. For each glass, the thermal properties were studied by differential thermal analysis (DTA) and the optical properties by UV-Vis-NIR spectroscopy. The changes in the glass structure induced by the progressive replacement of CaO by CaF2 were investigated using IR and Raman spectroscopies. The glasses were heat treated at 20 °C above their respective glass transition temperature for 17 h to form nuclei and then at their peak crystallization temperature for 1 h to grow the nuclei into crystals. An increase in the CaF2 content increased the polymerization of the phosphate network leading to shift of the band gap to lower wavelength and reduced the crystallization tendency of the glasses. At least two crystalline phases precipitated in all the investigated glasses, the composition of which depended on the CaF2 content. Finally, bulk crystallization was suspected to occur in the oxyfluorophosphate glasses.
Research output: Contribution to journal › Article › Scientific › peer-review
This paper provides a comprehensive characterisation of HVOF- and HVAF-sprayed Cr3C2-25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems. All coatings contain less Cr3C2 than the feedstock powder, possibly due to the rebound of some Cr3C2-rich particles during high-velocity impact onto the substrate. Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter- and intra-lamellar cohesion, being higher (≥70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch. Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (≈5×10-6 mm3/(Nm)). At 400 °C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from ≈0.7 to ≈0.5. The thermal expansion coefficient of the coatings (11.08×10-6 °C-1 in the 30-400 °C range) is sufficiently close to that of the steel substrate (14.23×10-6 °C-1) to avoid macro-cracking.
Research output: Contribution to journal › Article › Scientific › peer-review
Slurry erosion wear performance of glass fibre reinforced vinylester composite (FRP) has been studied using a pilot-scale erosion test apparatus. Tests were conducted at elevated temperatures in aqueous and acidic environments. When using fine quartz as an abrasive material, FRP showed higher mass losses in the aqueous environment than in the acidic conditions, especially at higher temperatures. In this case, the FRP degradation was governed by the penetration of the used medium into the FRP structure. According to the absorption studies, the weight gain of the laminate was more pronounced in the water immersion compared to the acidic solution, which can be a prediction of an increased degradation rate and explain the higher wear in the aqueous medium. When the abrasive material was changed from fine to coarse quartz, the removal of the shielding matrix phase was extensive and a direct route for the acidic solution to the fibres was created causing more severe damage. This was also shown in scanning electron microscopy (SEM) studies, where the samples tested in the acidic solution showed extensive fibre flattening along the erosion flux. By increasing the test temperature close to the boiling point of the medium, an increase in the FRP wear could be seen. The increase in the rotation speed, on the other hand, did not automatically mean higher mass losses. This shows that the wear environment in the present test device is highly complicated with several interrelated parameters affecting the results.
EXT="Lindgren, Mari"
Research output: Contribution to journal › Article › Scientific › peer-review
High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.
Research output: Contribution to journal › Article › Scientific › peer-review
Light-responsive supramolecular self-assemblies exhibit interplay between order and dynamics of the self-assembling motifs, through which the thermal isomerization rate of azobenzene chromophores can be tuned by orders of magnitude. By using supramolecular complexes of 4-(4-alkylphenylazo)phenols hydrogen-bonded to poly(4-vinylpyridine) as model systems, we demonstrate that the thermal isomerization rate of the hydroxyazobenzene derivatives increases 5700-fold when the material undergoes a transformation from a disordered, low-azobenzene-concentration state to a high-concentration state exhibiting lamellar, smectic-like self-assembly. Drastically smaller thermal isomerization rates are observed in disordered structures. This allows us to attribute the change to a combination of increased number density of the hydroxyazobenzenes inducing plasticization, and cooperativity created by the chromophore-chromophore interactions through self-assembled molecular order and alignment. Our results pinpoint the importance of molecular self-assembly and intermolecular interactions in modifying the dynamics in supramolecular complexes in a controlled manner. We foresee this to be important in light-controlled dynamic materials.
Research output: Contribution to journal › Article › Scientific › peer-review
It has been well known that incorporation of nano-heterostructures of various metals, semiconductors and dielectric materials in the active layer of organic solar cells (OSCs) helps in improving power conversion efficiency (PCE). In the present study, we demonstrated microwave synthesis of CdS nanoparticles (NPs) for their application in one of most efficient OSCs consisting of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7): [6,6]-phenyl C71-butyric acid methyl ester (PCBM) photoactive blend. This is crucial to fully explore the promising features of low cost and scalability in organic-inorganic hybrid solar cells. Synthesized CdS NPs are slightly elongated and highly crystalline with their absorption lies in the visible region as confirmed by High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-Vis absorption spectroscopy studies. Our experimental results for the devices in an inverted geometry having a structure ITO/ZnO/PTB7: CdS: PCBM/MoO3/Ag has shown increase in Jsc and PCE by nearly 10%. However, it was observed that this increase is only when NPs were added in the low concentration in active layer. UV-Vis absorption spectroscopy, Photoluminescence (PL) and atomic force microscopy (AFM) studies were carried out in order understand the device performance.
Research output: Contribution to journal › Article › Scientific › peer-review
The microstructure and micromechanical behavior of thermally sprayed Fe-based coatings manufactured with high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes were investigated. Fe-Cr-Ni-Si-B-C and Fe-Cr-Ni-Mo-Si-B-C powders were used as the feedstock materials. The coatings showed a highly dense microstructure with near-zero oxidation. The microstructure of the feedstock powders was better retained when sprayed with HVAF process. Differential scanning calorimetry revealed two small exothermic peaks at about 600 °C for the HVOF-sprayed coatings, without any increase in weight in thermogravimetric analysis. It suggested the re-precipitation of carbides that were dissolved during spraying due to the higher particle temperature reported by spray diagnostics system during the HVOF process (≈1800 °C) compared to the HVAF one (≈1400 °C). Micro- and nano-indentations helped to show the difference in inter-lamellar cohesive strength and, in turn, in the particle deposition mechanism. Coatings sprayed with Fe-Cr-Ni-Mo-Si-B-C composition possessed higher sliding wear resistance than that of Fe-Cr-Ni-Si-B-C due to higher nano-hardness. More specifically, HVOF-sprayed Fe-Cr-Ni-Mo-Si-B-C coating showed the largest intra-lamellar hardness, the largest elasticity, and high quality of particle interfaces which resulted in lower sliding wear rate.
Research output: Contribution to journal › Article › Scientific › peer-review
The melt-quenching method is employed to prepare the amorphous phosphate glasses containing silver nanoparticles (Ag NPs). The structural characteristics of phosphate glasses were investigated by X-ray diffraction, thermal analysis, transmission electron microscopy, UV-Vis spectroscopy, Raman, and infrared spectroscopy. The transmission electron microscopic images confirm the presence of spherical silver NPs having an average diameter in the range of 20-40 nm. The EDX analysis spectrum shows the presence of Ag element. Important structural changes induced by the Ag2CO3 addition to the phosphate glass, Raman- and IR-spectroscopic studies were carried out in order to correlate the variations in the glass properties with variations of the glass structure. The surface plasmon resonance (SPR) peak of silver nanoparticles embedded in Er3 + doped phosphate glass is evidenced at ∼403 nm. From the absorption spectra, the optical band gap is found to decrease with the increase of Ag NPs' concentration. All the obtained results in the present study were reported and discussed in detail.
EXT="Petit, L."
Research output: Contribution to journal › Article › Scientific › peer-review
This work reveals the influence of heat treatments on the microstructure, mechanical properties and abrasive wear behaviour of a Cr3C2NiCr coating deposited by an ethene-fuelled high-velocity oxygen-fuel spray process using an agglomerated-and-sintered feedstock powder. The wear resistance of an as-sprayed and heat treated (8 h at 800 °C) coating was evaluated in low- and high-stress abrasion regimes, the latter in a temperature range up to 800 °C. Precipitation of secondary carbides from the supersaturated as-sprayed binder matrix is at the core of the observed changes in the coatings wear resistance upon heat treating. This aging process renders the binder matrix softer and more ductile, as was probed by means of nanoindentation, and thereby improves its resistance against micro-cracking which is identified as an important wear mechanism in high-stress abrasion conditions.
Research output: Contribution to journal › Article › Scientific › peer-review
The chemical synthesis of WC-Co from water-soluble precursors and the effect of carbon content and cobalt addition were studied. Ammonium metatungstate AMT as tungsten source, glycine as a carbon source and cobalt acetate Co(C2H3O2)2 as a cobalt source was dissolved in water and spray-dried, and thermal synthesis in Ar atmosphere was performed. In order to understand the effects of carbon content and cobalt addition on synthesis steps, and the chemical and phase structure, thermogravimetry (TGA) with Differential Scanning Calorimetry (DCS) and mass spectrometry was used together with X-ray diffractometry and chemical analysis. The results reveal that carbon content mainly affected reduction temperatures and cobalt addition to reaction route and solid state synthesis temperature. This presented manufacturing route with water-soluble raw materials was a potential way of preparing nanostructural WC-Co composition with the correct phase structure and chemical composition.
EXT="Kanerva, Ulla"
EXT="Lagerbom, Juha"
Research output: Contribution to journal › Article › Scientific › peer-review
Adsorption and dissociation of H2 and hydrogenation of 1-pentyne on neutral and anionic Cu20 clusters have been investigated using the density functional theory and microkinetic modelling. Molecular adsorption of H2 is found to occur strictly at atop sites. The H2 dimer is activated upon adsorption, and the dissociation occurs with moderate energy barriers. The dissociated H atoms reside preferentially on 3-fold face and 2-fold edge sites. Based on these results, the reaction paths leading to the partial and total hydrogenation of 1-pentyne have been studied step-by-step. The results suggest that copper clusters can display selective activity on the hydrogenation of alkyne and alkene molecules. The hydrogenated products are more stable than the corresponding initial reactants following an energetic staircase with the number of added H atoms. Stable semi-hydrogenated intermediates are formed before the partial (1-pentene) and total (pentane) hydrogenation stages of 1-pentyne. The microkinetic model analysis shows that C5H10 is the dominant product. Increasing the reactants (C5H8/H2) ratio enhances the formation of products (C5H10 and C5H12).
INT=fys,"Ma, Li"
Research output: Contribution to journal › Article › Scientific › peer-review
Comparing homologous enzymes adapted to different thermal environments AIDS to shed light on their delicate stability/function trade-off. Protein mechanical rigidity was postulated to secure stability and high-temperature functionality of thermophilic proteins. In this work, we challenge the corresponding-state principle for a pair of homologous GTPase domains by performing extensive molecular dynamics simulations, applying conformational and kinetic clustering, as well as exploiting an enhanced sampling technique (REST2). While it was formerly shown that enhanced protein flexibility and high temperature stability can coexist in the apo hyperthermophilic variant, here we focus on the holo states of both homologues by mimicking the enzymatic turnover. We clearly show that the presence of the ligands affects the conformational landscape visited by the proteins, and that the corresponding state principle applies for some functional modes. Namely, in the hyperthermophilic species, the flexibility of the effector region ensuring long-range communication and of the P-loop modulating ligand binding are recovered only at high temperature.
Research output: Contribution to journal › Article › Scientific › peer-review
Due to their easy availability, low cost and opportunities for exploiting reactions of bromo substituents, 1,3,6,8-tetrabromopyrene has attracted major attention in the organic electronics community for designing and constructing novel classes of pyrene based organic semiconducting functional materials. In the present work, 1,3,6,8-tetrabromo pyrene was transformed into the corresponding tetrasubstituted carbazole and phenothiazine derivatives using the classical Suzuki coupling reaction. These newly synthesized materials with a carbazole substituent (PY-CA) and a phenothiazine substituent (PY-PH) were characterised thoroughly and were successfully used as an active light-emitting layer in organic light emitting diodes which resulted in blue and green emission with promising device performance. PY-CA exhibited the maximum brightness at around 2500 cd m-2 and the power efficiency of 1.5 lm W-1 while that of PY-PH exhibited 2116 cd m-2 and 0.45 lm W-1 respectively.
Research output: Contribution to journal › Article › Scientific › peer-review
Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.
EXT="Vazdar, Mario"
Research output: Contribution to journal › Article › Scientific › peer-review
The purpose of this study was to assess the dissolution of Si, Fe, Cu and Zn from a smelter slag sample under acidic chemical and bacterial leaching conditions. The Cu-containing solid phases were Cu-sulfides (57% distribution), fayalite (18%) and metallic Cu (16%). Zn was mostly associated with fayalite, magnetite and Na-silicate phases (Σ94%). Two mixed cultures (HB1 and HB2) were enriched from samples taken from the slag lagoon site at the smelter location. Comparable results of metal dissolution were obtained with the two mixed cultures. The enrichment culture HB1 was characterized further by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16S rRNA genes. Based on the 16S rRNA gene sequences, culture HB1 contained at least Acidithiobacillus ferrivorans and Alicyclobacillus cycloheptanicus, with sequences of three DGGE bands matching distantly with Alicyclobacillus tolerans and Alicyclobacillus herbarium in the database. Alicyclobacillus spp. have not been previously associated with slag lagoons or slag bioleaching. Approximately 80% Cu and 25% Zn were dissolved from the slag (10% pulp) in shake flasks when S0 was provided for the bacteria to produce H2SO4. Bioleaching in stirred tanks was conducted at controlled pH values and was practiced at pH levels promoting metal dissolution and suppressing iron and silicate solubilization from fayalite and Na-silicate. Chemical leaching at pH 2.3-4.0 did not yield substantial dissolution of valuable metals.
Research output: Contribution to journal › Article › Scientific › peer-review
The initial dissolution behavior of glasses based on bioactive glass S53P4 was studied with a dynamic measurement setup in a Tris-buffered solution. The glass composition was modified systematically on a molar basis by replacing sodium oxide with potassium oxide (0-100% K) and calcium oxide with magnesium (0-18% Mg) or strontium oxide (0-100% Sr). The concentrations of the ions dissolving from the glasses were measured continuously on-line in the fluid flow for 15 to 25 min using an inductively coupled plasma emission optical spectrometer. This method enabled attainment of detailed information on the initial dissolution mechanisms without the, for bioactive glasses typical, interference of apatite layer formation. The results showed that initial dissolutions of sodium and potassium were markedly higher from the mixed alkali oxide glasses than from the compositions containing only one alkali oxide. Introducing MgO in S53P4 caused a minor decrease in the dissolution rates of all ions. The glass containing 3 mol% of MgO showed the best chemical durability. In contrast, replacing CaO gradually with SrO increased the dissolution rates of all ions. The glasses with the highest replacement of CaO with SrO showed rapid release of both Sr and Na ions. The results corroborate the overall knowledge of glass durability and can be utilized to design bioactive glasses with controlled ion release rate for tissue engineering applications.
Research output: Contribution to journal › Article › Scientific › peer-review
Abstract: Controlled growth of in situ silica, into natural rubber (NR)/nitrile rubber (NBR) blend (40/60 composition by weight) following solution sol–gel method, results in a coherent blend morphology with enhanced composite properties. Similar composites, i.e., in situ silica-filled NR/NBR blend (40/60 by weight), showed better mechanical properties than any other composition that were prepared by soaking sol–gel method in earlier study. However, silica content in the rubber blend was limited to 20 phr (parts per hundred parts of rubber) and could not be increased under experimental condition following soaking sol–gel method. In the present work, silica content is increased (up to 30 phr) beyond that limit for the same blend composition. Accordingly, mechanical properties of the NR/NBR composites are improved. Use of a silane coupling agent, viz., bis-(3-triethoxysilylpropyl)-tetra sulfide, in the reactive sol–gel system during in situ silica generation brings in remarkable effect in silica distribution, rubber–filler interaction and mechanical properties of the composites. TEM micrographs of the selected composites reveal that silica is mostly grown at the interfacial region, when silane is used in particular. This results in further enhancement in mechanical properties and compatibility of the blend at the same silica content as evident from stress–strain and dynamic mechanical analysis studies. The reinforcement of effect in situ silica is assessed by Guth–Gold equation and modified form of Guth equation (with shape factor f = 2.53). The results are supported by the detailed studies on rheological, morphological, mechanical and viscoelastic properties of the composites. Graphical Abstract: [Figure not available: see fulltext.]
Research output: Contribution to journal › Article › Scientific › peer-review
Several different tool steel grades were deposited on mild steel by the laser-cladding process with coaxial powder feeding. With bidirectional scanning pattern, most of the grades were deposited crack-free with hardness up to 1000 HV without additional preheating. In a 3-body abrasion wear study, the laser clad Ralloy® WR6 with significant portion of retained austenite exhibited superior abrasive wear resistance compared with the predominantly martensitic tool steel coatings (M2, M4, H13, HS-23, HS-30) and the reference material, Raex® Ar500 wear resistant steel. The abrasion wear resistance of austenitic–martensitic WR6 tool steel was further enhanced by the external addition of 20% volume percentage of relatively large (45–106 µm) vanadium carbides. In single point scratch tests, predominantly martensitic tool steels outperformed austenitic–martensitic tool steels and wear resistant steel. The differences in wear performances were explained by different wear mechanisms and types of contact between the abrasive and the surface.
EXT="Näkki, J."
INT=mol,"Pajukoski, H."
Research output: Contribution to journal › Article › Scientific › peer-review
An inverse opal film was layered to a photodeformable film, and its photoresponsive behavior was investigated. This bilayer films composed of colorless photonic crystal using inverse opal structures and colored photoresponsive layers with azobenzene-containing CLCP.
Research output: Contribution to journal › Article › Scientific › peer-review
Here, we describe the use of a biolayer interferometry biosensor for the fast and sensitive detection of virus-specific antibodies from human serum samples. Norovirus-like particles and norovirus P-particles were used to functionalise the biosensor tip. The detection of antibodies directly from serum samples was challenging, but the addition of a metal chelator (DAB) combined with an anti-human horseradish peroxidase-tagged antibody enabled enhanced detection of virus-specific antibodies in serum dilutions up to 1:100,000. Biolayer interferometry provides results faster than an ELISA, with results in as little as 10-20 min when using pre-functionalised sensors. Therefore, biolayer interferometry combined with DAB enhancement offers an attractive method for quick and sensitive quantification of biomolecules from complicated sample matrices.
Research output: Contribution to journal › Article › Scientific › peer-review
Research output: Contribution to journal › Article › Scientific › peer-review
Based on atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analysis of the rubber-filler gel (wetting concept) the kinetics of selective wetting of carbon nanotubes (CNTs) in ternary styrene butadiene rubber (SBR)/butadiene rubber (BR)/natural rubber (NR) blends was qualitatively and quantitatively characterized. Almost all CNTs are found to be wetted by the non-polar NR but not by the other non-polar rubber like BR or weakly polar SBR. It was proposed that phospholipids, which are linked to the α-terminal of NR can interact with the CNT surface through cation-π interactions forming strong bonding between NR and CNTs. Using the corrected surface tension value of NR, which involves the effect of phospholipids found in our previous work the selective wetting of CNTs in ternary rubber blends can be well predicted using the Z-model for a thermodynamic equilibrium state. By replacing the non-polar BR by a polar rubber like nitrile butadiene rubber (NBR) as a blend component CNTs are wetted by NBR slightly more than by NR thanks to the strong interaction between CNTs and nitrile groups of NBR. SBR remains unbound to CNTs in both blends.
Research output: Contribution to journal › Article › Scientific › peer-review
The supramolecular assembly of photoactive azobenzenes with passive polymers via halogen or hydrogen bonding is a cost-effective way to design materials for various photomechanical applications that convert light energy directly into macroscopic motion, for instance, in all-optical surface patterning and photochemical imaging of plasmonic structures. To elucidate the molecular-level origins of this motion, we show, by coupling dynamic infrared spectroscopy to a photo-orientation setup, that supramolecular bonds above a certain interaction strength threshold are photostable under vigorous photoisomerization cycling and capable of translating the photo-orientation of azobenzenes into the orientation of nonabsorbing host polymer side chains. A correlation is found between azobenzene photoinduced molecular orientation and macroscopic all-optical surface patterning efficiency. The improved performance of halogen-bonded systems in photopatterning applications can be related to the absence of a plasticizing effect on the polymer matrix, which may enable the material to retain an optimal glass transition temperature, in contrast to hydrogen-bonded and nonbonded references. Thus, our results provide design guidelines in terms of the nature and strength of the supramolecular interaction and of the degree of azo functionalization needed to optimize the motion transfer to passive polymers.
EXT="Vapaavuori, Jaana"
Research output: Contribution to journal › Article › Scientific › peer-review
We demonstrate a unique combination of simultaneous top-down and bottom-up control of the morphology of block copolymer films by application of in situ optical irradiation during dip-coating. A light-addressable and block-selective small molecule, 4-butyl-4′-hydroxyazobenzene (BHAB), is introduced into a diblock copolymer of polystyrene and poly(4-vinylpyridine) (PS-P4VP) of 28.4 wt % P4VP via supramolecular chemistry, notably by hydrogen bonding to P4VP. We show that the spherical morphology of thin films dip-coated from a THF solution at slow withdrawal rates in the dark convert to cylindrical morphology when dip-coated under illumination. This is attributed to volume expansion of the P4VP/BHAB phase due to trans-cis photoisomerization combined with a light-induced increase in BHAB uptake in the film. The demonstrated photocontrol highlights the potential of dip-coating as a scalable film preparation method that can be easily coupled with external stimuli to direct nanostructured self-assembly in the films as solvent evaporates.
Research output: Contribution to journal › Article › Scientific › peer-review
The present work describes the wear behaviour of nodular cast iron in rolling-sliding contact with steel wire ropes and steel wires in laboratory and in-service conditions. In each of the studied examples, the wear had proceeded through a surface fatigue process, in which inter-nodular crack propagation and simultaneous deformation in a thin sub-surface zone had resulted in the formation of ferrous scales consisting of material from the metal matrix of the cast iron. The scale layers of the wear surface were oriented towards the direction of the sliding component of the motion, and the spalling of the scales was identified as the dominating mechanism for material removal from the wear surface. The initiation behaviour of the inter-nodular cracks was analysed by crack measurements and statistical analysis of the depths and initiation angles of the cracks in relation to the wear surface. The initiation depths of the cracks increased with increasing contact pressure. Roller samples from in-service and from the component wear tests showed closely similar distributions of the crack depths and crack initiation angles. The sample from the twin-disc test showed aspects of cracking behaviour that were typical of both the rolling and the sliding direction of the roller samples.
Research output: Contribution to journal › Article › Scientific › peer-review
New photocatalytic fibers made of sulfonated polyetheretherketone (SPEEK)/polypropylene (PP) are melt compounded and melt spun, first on laboratory scale and then on a semi-industrial scale. Fiber spinnability is optimized and the fibers are characterized using mechanical testing, electron paramagnetic resonance (EPR) spectroscopy, and scanning electron microscopy (SEM). According to the results, the fiber spinnability remains at a good level up to 10 wt % SPEEK concentration. Optimal processing temperature is 200C due to the thermal degradation at higher temperatures. EPR measurements show good and long-lasting photoactivity after the initial irradiation but also decay in the radical intensity during several irradiation cycles. Mechanical tenacity of the SPEEK/PP 5:95 fiber is approximately 20% lower than for otherwise similar PP fiber. The fiber is a potential alternative to compete against TiO2-based products but more research needs to be done to verify the real-life performance.
ORG=mol,0.5
ORG=mei,0.5
EXT="Skrifvars, Mikael"
Research output: Contribution to journal › Article › Scientific › peer-review
This paper investigates the effects of thermal degradation on polyetheretherketone (PEEK) fibres. PEEK samples were aged at a constant temperature of 250 °C for 1-128 days and characterized with mechanical tests, FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), rheology, TGA (Thermogravimetric Analysis), SEM (Scanning Electron Microscopy), and UV-Vis diffuse reflectance spectroscopy. The short-term thermal annealing had a positive effect on the mechanical properties, due to the formation and growth of secondary crystals. Crosslinking in the material was verified by rheological inspections. The crosslinking increased the mechanical strength and modulus but reduced the elongation at break of the fibres. FTIR tests showed that carbonyl and hydroxyl groups were slowly formed on the surface of the fibres while ring opening reactions took place. The thermal ageing reduced the thermal stability of PEEK. The decreased stability was observed in the decomposition onset temperature after 8 d and in the melting point and the glass transition temperature after 32 d. The first signs of degradation, crosslinking, embrittlement, and reduced thermal stability, were visible roughly after 8 d of ageing, whereas the deterioration in general usability occurred after 64 d.
ORG=mol,0.75
ORG=keb,0.25
24 kk embargo (post-print)
Research output: Contribution to journal › Article › Scientific › peer-review
Integrins are major players in cell adhesion and migration, and malfunctions in controlling their activity are associated with various diseases. Nevertheless, the details of integrin activation are not completely understood, and the role of lipids in the process is largely unknown. Herein, we show using atomistic molecular dynamics simulations that the interplay of phosphatidylinositol 4,5-bisphosphate (PIP2) and talin may directly alter the conformation of integrin αIIbβ3. Our results provide a new perspective on the role of PIP2 in integrin activation and indicate that the charged PIP2 lipid headgroup can perturb a clasp at the cytoplasmic face of the integrin heterodimer.
AUX=fys,"Pöyry, Annika"
Research output: Contribution to journal › Article › Scientific › peer-review
Thermally sprayed Fe-based coatings have been extensively studied as future solution in order to replace more expensive, harmful and environmentally dangerous Ni- and WC-based coatings for several industrial applications where high corrosion and wear resistance are required. The aim of the present study is to investigate the effect of spraying parameters on the microstructure and the corrosion resistance of Fe-based coatings manufactured with the High Velocity Air Fuel (HVAF) thermal spray process. Six sets of thermal spraying parameters have been chosen and their effect on the overall quality of coatings was investigated. All HVAF coatings showed comparably dense microstructure with near-zero oxidation, proving the high quality of the deposition process. However, higher anti-corrosion and mechanical properties were achieved by increasing the spraying air pressure and decreasing the particle feeding rate without altering the thickness and the overall deposition rate. Powder feeding rate was reported to have a remarkable effect on microstructure and corrosion properties. Coatings with beneficial compressive residual stresses were successfully obtained by increasing air pressure during spraying which resulted in improved microstructural and corrosion properties.
Research output: Contribution to journal › Article › Scientific › peer-review
Reversible light-responsive hydrogel valves with response characteristics compatible for microfluidics have been obtained by optimization of molecular design of spiropyran photoswitches and gel composition. Self-protonating gel formulations were exploited, wherein acrylic acid was copolymerized in the hydrogel network as an internal proton donor, to achieve a swollen state of the hydrogel in water at neutral pH. Light-responsive properties were endowed upon the hydrogels by copolymerization of spiropyran chromophores, using electron withdrawing and donating groups to tune the gel-swelling and shrinkage behavior. In all cases, the shrinkage was determined by the water diffusion rate, while for the swelling the isomerization kinetics is the rate-determining step. For one hydrogel, reversible and reproducible volume changes were observed. Finally, gel-valves integrated within microfluidic channels were fabricated, allowing reversible and repeatable operation, with opening and closing of the valve in minutes.
Research output: Contribution to journal › Article › Scientific › peer-review
The effects of unintentional boron contamination on optical properties of GaInP/AlGaInP quantum well structures grown by molecular beam epitaxy (MBE) are reported. Photoluminescence and secondary-ion mass spectrometry (SIMS) measurements revealed that the optical activity of boron-contaminated quantum wells is heavily affected by the amount of boron in GaInP/AlGaInP heterostructures. The boron concentration was found to increase when cracking temperature of the phosphorus source was increased. Boron incorporation was enhanced also when aluminum was present in the material.
Research output: Contribution to journal › Article › Scientific › peer-review
We consider the impact of phosphatidic acid (namely, 1,2-dioleoyl-sn-glycero-3-phosphate, DOPA) on the properties of a zwitterionic (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) bilayer used as a model system for protein-free cell membranes. For this purpose, experimental measurements were performed using differential scanning calorimetry and the Langmuir monolayer technique at physiological pH. Moreover, atomistic-scale molecular dynamics (MD) simulations were performed to gain information on the mixed bilayer's molecular organization. The results of the monolayer studies clearly showed that the DPPC/DOPA mixtures are nonideal and the interactions between lipid species change from attractive, at low contents of DOPA, to repulsive, at higher contents of that component. In accordance with these results, the MD simulations demonstrated that both monoanionic and dianionic forms of DOPA have an ordering and condensing effect on the mixed bilayer at low concentrations. For the DOPA monoanions, this is the result of both (i) strong electrostatic interactions between the negatively charged oxygen of DOPA and the positively charged choline groups of DPPC and (ii) conformational changes of the lipid acyl chains, leading to their tight packing according to the so-called umbrella model, in which large headgroups of DPPC shield the hydrophobic part of DOPA (the conical shape lipid) from contact with water. In the case of the DOPA dianions, cation-mediated clustering was observed. Our results provide a detailed molecular-level description of the lipid organization inside the mixed zwitterionic/PA membranes, which is fully supported by the experimental data.
Research output: Contribution to journal › Article › Scientific › peer-review
EXT="Lagerbom, Juha"
EXT="Kanerva, Ulla"
Research output: Contribution to journal › Article › Scientific › peer-review