UPS and DFT investigation of the electronic structure of gas-phase trimesic acid

Benzene-1,3,5-tricarboxylic acid (trimesic acid, TMA) molecules in gas-phase have been investigated by using valence band photoemission. The photoelectron spectrum in the binding energy region from 9 to 22 eV is interpreted based on the density functional theory calculations. The electronic configuration that makes contribution to each transition is demonstrated. Furthermore, electronic structure of TMA is compared with benzene and benzoic acid (BA) in order to demonstrate changes in molecular orbital energies induced by addition of carboxyl groups to benzene ring.

General information

State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Optoelectronics Research Centre, Research group: Surface Science, University of Tartu, MAX IV Laboratory, Lund University
Authors: Reisberg, L., Pärna, R., Kikas, A., Kuusik, I., Kisand, V., Hirsimäki, M., Valden, M., Nõmmiste, E.
Number of pages: 6
Pages: 11-16
Publication date: Nov 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Electron Spectroscopy and Related Phenomena
Volume: 213
ISSN (Print): 0368-2048
Ratings:
Scopus rating (2016): SJR 0.962 SNIP 0.837 CiteScore 1.72
Scopus rating (2015): SJR 0.813 SNIP 0.923 CiteScore 1.73
Scopus rating (2014): SJR 0.778 SNIP 0.815 CiteScore 1.48
Scopus rating (2013): SJR 0.91 SNIP 0.954 CiteScore 1.82
Scopus rating (2012): SJR 1.047 SNIP 0.954 CiteScore 1.72
Scopus rating (2011): SJR 1.06 SNIP 0.842 CiteScore 1.68
Scopus rating (2010): SJR 0.742 SNIP 0.658
Scopus rating (2009): SJR 0.682 SNIP 0.663
Scopus rating (2008): SJR 0.786 SNIP 0.68
Scopus rating (2007): SJR 0.774 SNIP 0.807
Scopus rating (2006): SJR 0.863 SNIP 0.725
Scopus rating (2005): SJR 0.779 SNIP 0.784
Scopus rating (2004): SJR 0.754 SNIP 0.759
Scopus rating (2003): SJR 1.093 SNIP 0.8
Scopus rating (2002): SJR 1.008 SNIP 0.771
Scopus rating (2001): SJR 0.872 SNIP 0.785
Scopus rating (2000): SJR 0.623 SNIP 0.593
Scopus rating (1999): SJR 0.891 SNIP 0.663
Original language: English
ASJC Scopus subject areas: Organic Chemistry, Atomic and Molecular Physics, and Optics
Keywords: trimesic acid, molecules, electronic structure, synchrotron radiation, MAX IV Laboratory, UPS, DFT, organic acids, gas-phase, spectroscopy, photoemission
DOIs: 10.1016/j.elspec.2016.10.004
Research output: Scientific - peer-review › Article