High speed, high strength microwelding of Si/glass using ps-laser pulses

A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 μm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Manufacturing and Automation, Osaka University, Erlangen Graduate School of Advanced Optical Technologies (SAOT), Okayama University, Corelase, Ltd.
Authors: Miyamoto, I., Okamoto, Y., Hansen, A., Vihinen, J., Amberla, T., Kangastupa, J.
Number of pages: 13
Pages: 3427-3439
Publication date: 9 Feb 2015
Peer-reviewed: Yes

Publication information
Journal: Optics Express
Volume: 23
Issue number: 3
ISSN (Print): 1094-4087
Ratings:
Scopus rating (2016): CiteScore 3.48 SJR 1.487 SNIP 1.589
Scopus rating (2015): SJR 1.976 SNIP 1.755 CiteScore 3.78
Scopus rating (2014): SJR 2.349 SNIP 2.166 CiteScore 4.18
Scopus rating (2013): SJR 2.358 SNIP 2.226 CiteScore 4.38
Scopus rating (2012): SJR 2.587 SNIP 2.145 CiteScore 3.85
Scopus rating (2011): SJR 2.579 SNIP 2.606 CiteScore 4.04
Scopus rating (2010): SJR 2.943 SNIP 2.466
Scopus rating (2009): SJR 3.092 SNIP 2.669
Scopus rating (2008): SJR 3.195 SNIP 2.393
Scopus rating (2007): SJR 3.27 SNIP 2.032
Scopus rating (2006): SJR 3.233 SNIP 2.326
Scopus rating (2005): SJR 3.334 SNIP 2.379
Scopus rating (2004): SJR 2.833 SNIP 2.499
Scopus rating (2003): SJR 2.688 SNIP 2.193
Scopus rating (2002): SJR 1.547 SNIP 1.673
Scopus rating (2001): SJR 1.442 SNIP 1.39
Scopus rating (2000): SJR 1.246 SNIP 0.714
Scopus rating (1999): SJR 1.381 SNIP 0.838
Original language: English
ASJC Scopus subject areas: Atomic and Molecular Physics, and Optics
DOIs: 10.1364/OE.23.003427
Links: http://www.scopus.com/inward/record.url?scp=84922814586&partnerID=8YFLogxK (Link to publication in Scopus)
Source: Scopus
Source-ID: 84922814586
Research output: Scientific - peer-review › Article

Analysis of the aircraft operational reliability research series: From statistical models to avionics data monitoring

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems, Research group: Käyttövarmuuden suunnittelu ja kunnossapito
Effect of heat transfer on glass quality in tempering

General information
State: Published
Ministry of Education publication type: B3 Non-refereed article in conference proceedings
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics, Research group: Lämpö- ja virtaustekniikka
Authors: Karvinen, R., Mikkonen, A.
Publication date: 2015

Host publication information
Title of host publication: GPD Glass Performance Days Finland 2015 : Conference Proceedings
ISBN (Print): 9789525836035

Bibliographical note
Contribution: organisation=epr,FACT1=1
Research output: Scientific › Conference contribution

Hydraulic Cylinder Models for Flexible Multibody System Simulation

General information
State: Published
Ministry of Education publication type: G4 Doctoral dissertation (monograph)
Organisations: Department of Mechanical Engineering and Industrial Systems, Research group: Teknillinen mekaniikka ja lijuusoppi
Authors: Ylinen, A.
Number of pages: 136
Publication date: 2015

Publication information
Place of publication: Tampere
Publisher: Tampere University of Technology
Original language: English

Publication series
Name: Tampere University of Technology. Publication
Publisher: Tampere University of Technology
Volume: 1302
ISSN (Print): 1459-2045

Bibliographical note
Awarding institution: Tampere University of Technology
Research output: Monograph › Doctoral Thesis

CFD based on-line process analysis - applied to circulating and bubbling fluidized bed processes
High Performance Particle Tracking Velocimetry for Fluidized Beds

State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Elfvengren, J., Kolehmainen, J., Saarenrinne, P.
Number of pages: 9
Pages: 441-449
Publication date: 2014

Host publication information
Publisher: SCITEPRESS
Editors: Battiato, S., Braz, J.
ISBN (Print): 978-989-758-009-3
DOIs:
10.5220/0004659404410449
Links:
http://www.visapp.visigrapp.org/

Bibliographical note
Contribution: organisation=mei,FACT1=1
Portfolio EDEND: 2014-12-13
Source: researchoutputwizard
Source-ID: 281
Research output: Scientific - peer-review › Conference contribution

Image based measurement techniques for particulate flows

State: Published
Ministry of Education publication type: G5 Doctoral dissertation (article)
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Kolehmainen, J.
Number of pages: 98
Publication date: 2014
Interference-based overlapping particle tracking velocimetry for fluidized beds

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Kolehmainen, J., Elfvengren, J., Saarenrinne, P.
Number of pages: 15
Pages: 1-15
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Experiments in Fluids
Volume: 55
Issue number: 1825
ISSN (Print): 0723-4864
Ratings:
Scopus rating (2016): SJR 0.994 SNIP 1.324 CiteScore 2.18
Scopus rating (2015): SJR 1.193 SNIP 1.592 CiteScore 2.04
Scopus rating (2014): SJR 1.235 SNIP 1.721 CiteScore 2.21
Scopus rating (2013): SJR 1.425 SNIP 1.927 CiteScore 2.41
Scopus rating (2012): SJR 1.114 SNIP 1.82 CiteScore 1.96
Scopus rating (2011): SJR 1.167 SNIP 1.938 CiteScore 1.93
Scopus rating (2010): SJR 1.016 SNIP 1.635
Scopus rating (2009): SJR 1.531 SNIP 1.881
Scopus rating (2008): SJR 1.658 SNIP 1.903
Scopus rating (2007): SJR 1.258 SNIP 1.511
Scopus rating (2006): SJR 1.311 SNIP 1.443
Scopus rating (2005): SJR 1.334 SNIP 1.398
Scopus rating (2004): SJR 0.765 SNIP 1.365
Scopus rating (2003): SJR 1.51 SNIP 1.353
Scopus rating (2002): SJR 1.462 SNIP 1.609
Scopus rating (2001): SJR 1.417 SNIP 2.187
Scopus rating (2000): SJR 2.008 SNIP 1.647
Scopus rating (1999): SJR 0.893 SNIP 0.932
Original language: English
DOIs:
10.1007/s00348-014-1825-2

Bibliographical note
Contribution: organisation=mei,FACT1=1
Portfolio EDEND: 2014-12-02
Publisher name: Springer
Source: researchoutputwizard
Source-ID: 744
Research output: Scientific - peer-review › Article
PTV and PIV based dispersed phase velocity measurements in a pseudo-2D turbulent fluidized bed

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Kolehmainen, J., Elfvengren, J., Ylönen, M., Saarenrinne, P., Kallio, S., Peltola, J.
Number of pages: 9
Pages: 1-9
Publication date: 2014

Host publication information
Title of host publication: Proceedings of the International Conference on Heat Transfer and Fluid Flow, (HTFF’14), Prague, Czech Republic, August 11-12, 2014
Publisher: Avestia Publishing, International ASET
ISBN (Print): 978-1-927877-09-8
Links:

Bibliographical note
Contribution: organisation=mei,FACT1=1
Portfolio EDEND: 2014-12-13
Source: researchoutputwizard
Source-ID: 745
Research output: Scientific - peer-review » Conference contribution