Conversion of Iterative Balance Models to Directly Calculating Explicit Models for Real-time Process Optimization and Scheduling

Optimal utilization of complex processes involves real-time operational optimization and scheduling, especially in cases where the production line consists of both continuous and batch operated unit processes. This kind of real-time optimization requires process models which can be computed significantly faster than real-time. Iterative balance calculation is typically far too slow for these cases. This paper presents a method for converting an iterative balance model to a directly calculating model suitable for on-line process optimization. The approach is demonstrated with the first unit process in the copper smelting line, the flash smelting furnace (FSF). The method consisted of formulating an equation group based on the constrained FSF HSC-Sim model and solving the unknown parameters and static states with use of a symbolic calculation software. The solution was implemented as a function whose calculation time fulfilled the requirements for scheduling use.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Authors: Björkqvist, T., Suominen, O., Vilkko, M., Korpi, M.
Pages: 257-266
Publication date: Dec 2016
Peer-reviewed: Yes

Publication Information
Journal: Simulation Notes Europe SNE
Volume: 26
Issue number: 4
ISSN (Print): 2305-9974
Original language: English
DOIs: 10.11128/sne.26.tn.10357
Links:
Research output: Scientific - peer-review › Article

From Iterative Balance Models to Directly Calculating Explicit Models for Real-time Process Optimization and Scheduling

Optimal utilization of complex processes involves real-time operational optimization and scheduling, especially in cases where the production line consists of both continuous and batch operated unit processes. This kind of real-time optimization requires process models which can be computed significantly faster than real-time. Iterative balance calculation is typically far too slow for these cases. This paper presents a method for converting an iterative balance model to a directly calculating model suitable for online process optimization. The approach is demonstrated with the first unit process in the copper smelting line, the flash smelting furnace (FSF). The method consisted of formulating an equation group based on the constrained FSF HSC-Sim model and solving the unknown parameters and static states with use of a symbolic calculation software. The solution was implemented as a function whose calculation time fulfilled the requirements for scheduling use.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Authors: Björkqvist, T., Suominen, O., Vilkko, M., Korpi, M.
Number of pages: 6
Pages: 184-189
Publication date: 12 Sep 2016

Host publication information
Title of host publication: 2016 9th EUROSIM Congress on Modelling and Simulation
Copper Production as an Application of Optimization and Scheduling

Copper production in a copper smelter is a process comprised of batch and continuous production tasks. Typically, subprocesses have been operated in a locally optimal way though significant interdependencies exist. In general, copper production presents a harsh environment where production is often disturbed by unforeseen events and frequent maintenance operations. Optimization of production is further complicated by the significantly differing timescales with recycling of some materials. This work presents first the main production tasks related to copper production and then details requirements and procedures in modelling the full task with the goal of producing models suitable for a global scheduling solution. The main scheduling decision variables are detailed and a simplified example of scheduling two converters is included. The scheduling and optimization is to provide operators with advice on timings and resource use to maximize equipment use and production throughput. The solution structure may be viewed as a combination of scheduling and predictive control techniques. By considering material inputs over the complete production cycle, the optimization is to provide improvements especially in impurity control.

Heat stress adaptation induces cross-protection against lethal acid stress conditions in Arcobacter butzleri but not in Campylobacter jejuni

Heat stress adaptation induces cross-protection against lethal acid stress conditions in Arcobacter butzleri but not in Campylobacter jejuni.