Utilization of Models for Online Estimation in Combustion Applications

The emerging environmental and energy system related requirements urge renewed combustion systems, with a focus on extended flexibility and decreased emissions. At the same time, monitoring and measurement reliability requirements are increasing. All these requirements also increasingly affect existing combustion plants.

To tackle the increasing needs and requirements of existing combustion processes, this thesis' objective is to integrate process and domain knowledge, models, and online estimation to provide cost effective and practically feasible solutions for online emission monitoring and control in existing combustion processes. These solutions are domain specific, comprising power level, main fuel, boiler technology, process environment, and market. This thesis presents a framework to provide practically justified, online monitoring and control solutions that is applied to selected combustion applications.

The first application is combustion control of small-scale (<0.5 MW) wood chip combustion systems, to tackle fuel feed disturbances and provide stabilized combustion conditions with improved process performance. The second application area is medium-scale (15 MW – 50 MW) natural gas fired boilers. Indirect, data based, NOx monitoring methods were developed for such boilers, to cost effectively fulfil emerging monitoring requirements. The third application area is large-scale power plants (>100 MW). A novel, first principle combustion model was developed for these. The generic combustion model interlinks the combustion related measurements distributed within any boilers regardless of boiler type or fuels. The interlinking enables combustion processes to be considered as an entity that reveals if a measurement provide realistic readings compared with others. The static, computationally light model enables simultaneous data reconciliation and gross error detection and hence several attractive online applications, such as reliable estimation of unmeasured variables, and separation of process disturbances from sensor malfunctions.

The results verify that the process performance improved in all studied practical applications, providing feasible solutions for increasing requirements.

Utilization of Drum Boilers' Storage Capacity for Flexible Operation

Due to increasing amount of intermittent and uncontrollable renewable energy production and reducing amount of stabilizing inertia in power systems, requirements for improved dynamic performance of controllable steam boilers will increase remarkably. Load tracking capacity of steam boilers consists of utilization of fast responding energy storages in boiler structures and change rate of available combustion power. This paper presents results of a simulation based dynamic analysis of the transient operation of a steam boiler exposed to fast load change. The results are evaluated against the requirements set by the maximum allowed thermal stresses in boiler structures and stability of steam parameters set by steam turbine operation. This project is a part of the FLEXe (Flexible Future Energy Systems) research program coordinated by CLIC Innovation Ltd and funded by the Finnish Funding Agency for Innovation TEKES.

Utilization of Models for Online Estimation in Combustion Applications

The emerging environmental and energy system related requirements urge renewed combustion systems, with a focus on extended flexibility and decreased emissions. At the same time, monitoring and measurement reliability requirements are increasing. All these requirements also increasingly affect existing combustion plants.

To tackle the increasing needs and requirements of existing combustion processes, this thesis' objective is to integrate process and domain knowledge, models, and online estimation to provide cost effective and practically feasible solutions for online emission monitoring and control in existing combustion processes. These solutions are domain specific, comprising power level, main fuel, boiler technology, process environment, and market. This thesis presents a framework to provide practically justified, online monitoring and control solutions that is applied to selected combustion applications.

The first application is combustion control of small-scale (<0.5 MW) wood chip combustion systems, to tackle fuel feed disturbances and provide stabilized combustion conditions with improved process performance. The second application area is medium-scale (15 MW – 50 MW) natural gas fired boilers. Indirect, data based, NOx monitoring methods were developed for such boilers, to cost effectively fulfil emerging monitoring requirements. The third application area is large-scale power plants (>100 MW). A novel, first principle combustion model was developed for these. The generic combustion model interlinks the combustion related measurements distributed within any boilers regardless of boiler type or fuels. The interlinking enables combustion processes to be considered as an entity that reveals if a measurement provide realistic readings compared with others. The static, computationally light model enables simultaneous data reconciliation and gross error detection and hence several attractive online applications, such as reliable estimation of unmeasured variables, and separation of process disturbances from sensor malfunctions.

The results verify that the process performance improved in all studied practical applications, providing feasible solutions for increasing requirements.

Utilization of Drum Boilers' Storage Capacity for Flexible Operation

Due to increasing amount of intermittent and uncontrollable renewable energy production and reducing amount of stabilizing inertia in power systems, requirements for improved dynamic performance of controllable steam boilers will increase remarkably. Load tracking capacity of steam boilers consists of utilization of fast responding energy storages in boiler structures and change rate of available combustion power. This paper presents results of a simulation based dynamic analysis of the transient operation of a steam boiler exposed to fast load change. The results are evaluated against the requirements set by the maximum allowed thermal stresses in boiler structures and stability of steam parameters set by steam turbine operation. This project is a part of the FLEXe (Flexible Future Energy Systems) research program coordinated by CLIC Innovation Ltd and funded by the Finnish Funding Agency for Innovation TEKES.
Conversion of Iterative Balance Models to Directly Calculating Explicit Models for Real-time Process Optimization and Scheduling

Optimal utilization of complex processes involves real-time operational optimization and scheduling, especially in cases where the production line consists of both continuous and batch operated unit processes. This kind of real-time optimization requires process models which can be computed significantly faster than real-time. Iterative balance calculation is typically far too slow for these cases. This paper presents a method for converting an iterative balance model to a directly calculating model suitable for on-line process optimization. The approach is demonstrated with the first unit process in the copper smelting line, the flash smelting furnace (FSF). The method consisted of formulating an equation group based on the constrained FSF HSC-Sim model and solving the unknown parameters and static states with use of a symbolic calculation software. The solution was implemented as a function whose calculation time fulfilled the requirements for scheduling use.

Modelling and Simulation of Radial Spruce Compression to Optimize Energy Efficiency in Mechanical Pulping

General information

Functionality Testing of Water Pressure and Flow Calculation for Dynamic Power Plant Modelling

Water pressure and flow rate calculation in dynamic boiler models is challenging because of stiff system dynamics meaning that time constants of model states vary by several orders of magnitude. Furthermore, strong interconnections between pressures and flow variables may cause instability problems in simulation runs. This study presents a method to implement and test dynamic thermal power plant water-steam system models. A dynamic water-steam system model is presented. The model is applied for testing of the functionality of the presented computation model. Computational performance was tested using different numerical solvers. Also sensitivity to changes in initial values of system states and model parameters was tested. The results indicate that a workable way to make flexible models was found.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Automation Science and Engineering, Research area: Measurement Technology and Process Control
Authors: Yli-Fossi, T.
Number of pages: 6

Menetelmä ja laitteisto selluloosapitoisten materiaalien fibrilloimiseksi; Förfarande och anordning för fibrillering av cellulosohaltiga materialer

General information
State: Published
Ministry of Education publication type: H1 Granted patent
Authors: Björkqvist, T., Gustafsson, H., Koskinen, T., Nuopponen, M., Vehniäinen, A., Fredrikson, A.
Publication date: 15 Aug 2016

Publication information
IPC: D21D 1/20, D21B 1/04, D21H 11/18
Patent number: FI126206
Priority date: 23/06/11
Priority number: FI20110005667
Original language: Finnish
Links:
https://patent.prh.fi/patdocs/certificate.jsp?app=20115667
Source: espacenet
Source-ID: FI20115667
Research output: Scientific › Patent

Modelling and simulation of radial spruce compression

Links:
http://urn.fi/URN:NBN:fi:tty-201708281835
Research output: Scientific - peer-review › Conference contribution
Gain-Scheduled Composite Nonlinear Feedback Control of an Exothermic Chemical Reactor

This paper studies gain-scheduled composite nonlinear feedback (CNF) control of a continuous stirred tank reactor (CSTR). Inside the reactor, an exothermic chemical reaction occurs, which is commanded from high to low residual concentration. During the transition, the reaction dynamics change through stable-unstable-stable chain while the residual concentration decreases. Therefore, appropriate cooling is necessary to stabilize the reaction, and to prevent a thermal runaway and overheating of the CSTR. A full-state gain-scheduled CNF controller is designed for adjusting the coolant temperature of the CSTR. A traditional gain-scheduled cascade controller and a gain-scheduled model predictive controller (MPC) are also fabricated for comparison. The simulation results show that the closed-loop system using CNF controller is able to offer the best tracking performance as measured by the integral-of-absolute-error (IAE) criterion. In addition, the CNF controller needs fewer scheduled tuning parameters as opposed to the cascade structure.
Heat Transfer Phenomena in Float Glass Heat Treatment Processes

Glass tempering is a process in which the strength of float glass is improved with heat treatment. In a tempering furnace glass is on top of rotating ceramic rollers. In the process glass plates are heated with thermal radiation and forced convection up to about 640°C and then cooled by air jets at a cooling rate depending on the glass thickness. The residual stress, i.e., tempering level depends on the cooling speed. In order to solve glass temperatures during a tempering process, the problem is to find solving method for radiation heat flux, convection heat transfer coefficients and contact heat transfer coefficient. The aim of the heat-soak process for tempered glass is to eliminate glasses at risk of spontaneous breakage. In the process glasses are heated up to 290°C by hot air flowing in a channel between them. The problem is to find solving methods for glass and air temperatures which depend on the stream-wise coordinate and time.

A method for solving radiation heat flux from a tubular resistor to a plate under it was developed.

The radiative properties of clear and low emissivity coated soda-lime glass were shown and thermal radiation in a plate with different surroundings was described. A new method for solving net radiation heat transfer between a clear plate glass and diffuse surroundings was developed. In the method the radiation between glass volume elements is ignored and integration over hemisphere is covered by using the mean reflectivity of glass surface and the mean propagation angle at which radiation travels in glass. The use of the method is limited to glass temperatures below 700°C. The method was also adapted to coated glass. The method was used to show the effect of the radiation wavelength, glass thickness and low emissivity coating to plate glass radiation properties. The results of the method were compared against results in the literature. The method gave the same results. In the simplest version of the new method only the first internal reflection from glass-air interface was considered, and even then the accuracy was high.

The development of an air jet was introduced with equations. The momentum of the jet was solved experimentally and the results were compared against calculated ones. Local convection heat transfer coefficients on a flat surface under a sonic velocity air jet alike in glass tempering furnace were solved experimentally by using a constant heat flux plate. The effect of discharging pressure, orifice diameter and nozzle-to-plate distance to heat transfer was studied. The literature correlations were used and new experiments were made to research heat transfer under an impinging incompressible jet. It was observed that when the moment of a jet and nozzle to plate distance are equal, then heat transfer is quite equal, even if the nozzle diameter and discharging pressure varied.

Heat transfer under an array of air jets alike in glass tempering chiller was studied experimentally and with a literature correlation. In the experiment three different jet arrays were used in which only the nozzle diameter varied. The heat transfer of each jet array was found to be quite equal when the fan power needed to create jets was the same. The heat transfer coefficients given by the correlation corresponded well to the ones given by new measurements. Measured heat transfer coefficients were 11 to 14 % higher than the predicted ones, and the change in the overpressure changed the measured heat transfer coefficients in the same relation as it changed the measured ones.

The contact heat transfer between glass and rollers was studied. The following estimate for effective contact heat transfer coefficient of glass on top of ceramic rollers in tempering furnace was found: $1 \leq h \leq 3 \text{ W/(mK)}$.

The methods for solving heat transfer between glass and air flowing in a narrow channel between glasses were presented for both turbulent and laminar flow. The method for solving heat transfer in a heat soak furnace was developed. In the heat soak furnace studied the flow was found to be turbulent, but also laminar flow could occur during the final stages of the heating due to increasing air temperature, i.e., decreasing Reynolds number. Theoretically predicted and measured temperatures were found to be in reasonable agreement. An extended method for furnace designer and operator for solving heat transfer in a heat soak furnace was developed with witch was found that in a very narrow channel the heating time increased dramatically because the air temperature at the end of such a channel was almost as low as glass temperature, i.e., heat from the air was already transferred to glass. The heating time also increased with the glass flow-wise length and thickness, although the total mass of the glass loading remained the same.
A comparison of rheology and FTIR in the study of polypropylene and polystyrene photodegradation

Rheology and FTIR spectroscopy are compared as methods to study the degree of photodegradation in polypropylene (PP) and polystyrene (PS) sheets. The materials are hot pressed, artificially photo-aged with fluorescent lights for 4-2048 h and then measured with a rotational rheometer and FTIR. Both materials show a tendency for chain scission which can be seen as a reduction in viscosity. Changes in PP can be observed with both methods after 256 h of irradiation. Changes in PS become significant in rheology after 64 h but in FTIR only after 1024 h of irradiation. Due to the different chemical nature of the materials, the degradation of PS is rather linear with exposure, whereas the degradation of PP is more exponential. Using the zero shear viscosities obtained through extrapolations of the Cole-Cole and Carreau-Yasuda models, relative molecular weights are estimated with the aid of the power-law relationship between these two. These results are compared with the carbonyl indices determined from the FTIR spectra. Rheology is found to be a viable alternative for FTIR in certain situations.
Systematic search for design contradictions in systems' architecture: Toward a computer aided analysis

Time pressure imposed to the engineering design process is one fundamental constraint pushing engineers to rush into known solutions, to avoid analysing properly the environment of a design problem, to avoid modelling design problems and to take decision based on isolated evidences. Early phases in particular have to be kept short despite the large impact of decisions taken at this stage. Significant efforts are currently spent within different engineering communities to develop a model-based design approach adapted to conceptual stages. Developing such type of models is also challenging due to the fuzziness of the information and due to the complexity of the concepts and processes manipulated at this stage. Currently few support tools are really capable of really supporting an analysis of the early design concepts and architectures. Simultaneously the approach should be fast, easy to use and should provide a real added-value to efficiently support the decision and the design process. The present article is presenting a framework based on a progressive transformation of the design concepts. The final material generated by this transformation process is an oriented graph with different types of classified variables. This graph can be processed as described in the article to automatically exhibit the conflicts or contradictions present in the design concept architecture. The article is proposing two main contributions which are a real move toward model development at conceptual stage and the possibility to process those models to detect solution weaknesses. The discussion is presenting further developments and possibilities associated with this method.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Manufacturing and Automation, Department of Pervasive Computing, Research area: Software engineering, Intelligent dexterity for secure networked infrastructure and applications (IDSNIA), Aalto University, Department of Mechanical Engineering and Integrated Systems, Applied Physics Laboratory, Johns Hopkins University, Karlsruhe University
Authors: Coatanéa, E., Nonsiri, S., Roca, R., Mokammel, F., Kruck, J., Christophe, F.
Number of pages: 22
Pages: 25-46
Publication date: 6 Jun 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Integrated Design and Process Science
Volume: 19
Issue number: 1
ISSN (Print): 1092-0617
Ratings:
Scopus rating (2016): SJR 0.176 SNIP 0.368 CiteScore 0.43
Scopus rating (2015): SJR 0.231 SNIP 0.537 CiteScore 0.36
Optimal Shapes of Straight Fins and Finned Heat Sinks

Finned heat sinks are used to cool power electronics components. We present optimization results for single rectangular, triangular, and trapezoidal fins. After that, we minimize the mass of an existing heat sink consisting of a base plate and a fin array by optimizing the geometrical variables and component locations on the base plate. An analytical solution is used with rectangular fins and a numerical model with trapezoidal fins. Whereas the triangle is the best shape for single fins, in a heat sink flow velocity coupled with geometry favors trapezoids over triangles and rectangles.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics
Authors: Lindstedt, M., Lampio, K., Karvinen, R.
Number of pages: 8
Publication date: Jun 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Heat Transfer: Transactions of the ASME
Volume: 137
Issue number: 6
Article number: 061006
ISSN (Print): 0022-1481
Ratings:
Scopus rating (2016): SJR 0.834 SNIP 1.038 CiteScore 1.71
Scopus rating (2015): SJR 1.061 SNIP 1.023 CiteScore 1.62
Scopus rating (2014): SJR 0.885 SNIP 1.059 CiteScore 1.53
Reframing the value of virtual prototyping: Intermediary virtual prototyping - the evolving approach of virtual environments based virtual prototyping in the context of new product development and low volume production

This thesis studies how the evolving approach of virtual environments-based virtual prototyping can be evaluated in the context of product design and development in the manufacturing industry. The entry point for this research is the relatively long experience in applied research in virtual prototyping with industry. As the virtual prototyping technology has become more mature, the focus of research and development has extended from technology demonstrations towards utilization in product design and development processes. However, lack of scientific and practical knowledge of real benefits and the value of virtual prototyping has seemed to be a deterrent to its wider adoption of industry. The aim of this thesis is by means of scientific research to increase the knowledge of the value contribution of virtual prototyping as well as its impacts in a practical industrial context.

This problem was approached from the science base by formulating an expanded theory framework for value modelling, and from the problem base by an empirical case study in one manufacturing company. The research approach was constructive and exploratory.

The research results consist of three types of knowledge. Firstly, the scientific theoretical foundation was elaborated for initiating value modelling of virtual prototyping and virtual environments. Secondly, new knowledge on the value of virtual prototyping within new product development was created in an industrial case study. Finally, knowledge on how virtual prototyping (VP) impacts the company was reported. The impact was discussed in the dimensions of process, social and technological implications.

This research contributed to engineering design science by conceptualizing virtual prototyping in the context of product design and development expanding to the dimensions of human factors and management theory. Thus, the contribution is also manifested by constructing the expanded theory framework for virtual prototyping value modelling in four dimensions with causal justification from virtual reality technology to business value elements which led to the new concept of Intermediary Virtual Prototyping (IVP). The discussed concept of IVP underscores the many layers from technical advantages of virtual reality to the expanded mediating object of product development activity system.

The discussion was carried on from the perspective of a partially configurable products and manual work-intensive variant production mode. This perspective is novel compared to the majority of virtual prototyping and virtual environments literature. It is proposed that IVP is particularly beneficial in this context, where human skills and knowledge contribute to the flexibility of production system.

IVP should be considered as a strategic investment that will produce income in the long run. IVP contributes to the co-creation and variant production paradigms by involving human creativity at an early product design and development phase, thus increasing flexibility. IVP creates value in use, but in turn it impacts the company in all the four dimensions.
On the choice of damage variable in the continuum fatigue model based on a moving endurance surface

This paper considers two different damage formulations for modelling high-cycle fatigue of materials. The underlying fatigue model is formulated within continuum mechanics framework with the concept of a moving endurance surface. Such a model has a unique feature that it allows for the concepts of fatigue limits and damage accumulation during the load history thus avoiding cycle-counting techniques. A Scalar and tensor type of damage variables are utilized with an essentially similar type of damage evolution law. The tensor damage model capable of accounting for damage induced anisotropy is based on the gradient of the endurance surface. The performance of the scalar and tensor damage formulations are compared with different multidimensional stress histories.

On improvement of transient stage of composite nonlinear feedback control using arbitrary order set point filters

This paper studies the generalization of composite nonlinear feedback (CNF) control using arbitrary order set point filters, which focus on the initial stage of the transient response. The set point filters can be used to provide more performance by shortening the rise and settling times of the control system. Furthermore, the filters operate outside the feedback loop, and
hence, they do not sacrifice loop robustness. The new method is illustrated by a benchmark problem found in an open literature. The simulation results show that the proposed method improves the set point response more than 10% in terms of settling time.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Authors: Pyrhönen, V., Koivisto, H.
Number of pages: 6
Pages: 147 - 152
Publication date: 1 Apr 2015

Host publication information
Title of host publication: 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)
Publisher: Institute of Electrical and Electronics Engineers IEEE
ISBN (Print): 978-1-4799-5685-2
Keywords: Composite nonlinear feedback, actuator saturation, high performance, robust control, set point filter, control system synthesis, feedback, nonlinear control systems, transient response
DOIs: 10.1109/ICCSCE.2014.7072705
Research output: Scientific - peer-review › Conference contribution

Composite Nonlinear Feedback Control of a Chemical Reactor
This paper studies the application of composite nonlinear feedback (CNF) control for a continuous time stirred tank reactor. Inside the reactor, an exothermic chemical reaction occurs, which requires cooling when concentration is commanded from low to high conversion rate to prevent a thermal runaway. A full-state CNF controller is designed for adjusting the temperature of the cooling jacket using concentration and temperature measurements. A continuous time gain-scheduled cascade controller, as well as a model predictive controller (MPC) is also fabricated for comparison. The gain-scheduled cascade controller has a proportional-integral (PI) controller as a primary loop controller, and a P-controller as a secondary loop controller. The simulation results show that the CNF controller is able to offer the best overall tracking performance as measured by the integral-of-absolute-error (IAE) criterion. In addition, the CNF controller does not need gain-scheduling for tuning purposes; the CNF controller is capable of changing its tuning as a function of control error only.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Research area: Information Systems in Automation, Research area: Dynamic Systems, Department of Automation Science and Engineering
Authors: Pyrhönen, V., Koivisto, H.
Publication date: 18 Mar 2015

Host publication information
Title of host publication: Proceedings of AutomaatioXXI, The Industrial Revolution of Internet – From Intelligent Devices to Networked Intelligence
Place of publication: Helsinki, Finland
Publisher: Suomen Automaatioseura ry

Publication series
Name: SAS julkaisusarja
Publisher: Finnish Society of Automation
Volume: 44
Keywords: exothermic reaction, nonlinear control, nonlinear dynamics, cascade control
Research output: Scientific - peer-review › Conference contribution

A Method and an Apparatus for Producing Nanocellulose

General information
State: Published
Ministry of Education publication type: H1 Granted patent
High speed, high strength microwelding of Si/glass using ps-laser pulses
A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 μm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Manufacturing and Automation, Osaka University, Erlangen Graduate School of Advanced Optical Technologies (SAOT), Okayama University, Corelase, Ltd.
Authors: Miyamoto, I., Okamoto, Y., Hansen, A., Vihinen, J., Amberla, T., Kangastupa, J.
Number of pages: 13
Pages: 3427-3439
Publication date: 9 Feb 2015
Peer-reviewed: Yes

Publication information
Journal: Optics Express
Volume: 23
Issue number: 3
ISSN (Print): 1094-4087
Ratings:
Scopus rating (2016): CiteScore 3.48 SJR 1.487 SNIP 1.589
Scopus rating (2015): SJR 1.976 SNIP 1.755 CiteScore 3.78
Scopus rating (2014): SJR 2.349 SNIP 2.166 CiteScore 4.18
Scopus rating (2013): SJR 2.358 SNIP 2.226 CiteScore 4.38
Scopus rating (2012): SJR 2.587 SNIP 2.145 CiteScore 3.85
Scopus rating (2011): SJR 2.579 SNIP 2.606 CiteScore 4.04
Scopus rating (2010): SJR 2.943 SNIP 2.466
Scopus rating (2009): SJR 3.092 SNIP 2.669
Scopus rating (2008): SJR 3.195 SNIP 2.393
Scopus rating (2007): SJR 3.27 SNIP 2.032
Scopus rating (2006): SJR 3.233 SNIP 2.326
Scopus rating (2005): SJR 3.334 SNIP 2.379
Scopus rating (2004): SJR 2.833 SNIP 2.499
Scopus rating (2003): SJR 2.688 SNIP 2.193
Scopus rating (2002): SJR 1.547 SNIP 1.673
Scopus rating (2001): SJR 1.442 SNIP 1.39
Scopus rating (2000): SJR 1.246 SNIP 0.714
Scopus rating (1999): SJR 1.381 SNIP 0.838
Original language: English
ASJC Scopus subject areas: Atomic and Molecular Physics, and Optics
DOIs:
High performance wear and corrosion resistant coatings by novel cladding techniques

In the field of surface engineering, cladding or overlay welding is a group of coating methods used in manufacturing fusion-bonded thick metallic and metal matrix composite (MMC) coatings on a wide variety of metallic base materials with varying degree of deposition rate, dilution and heat input. Growing demands for more material-, energy- and cost-effective overlay welding processes as well as sustainable solutions for performance-critical applications have boosted to develop methods that are capable of producing low diluted and fusion-bonded single layer coatings with high deposition rates. Such novel cladding methods include for instance laser-based high power laser cladding, coaxial hot-wire laser cladding, laser-arc hybrid cladding, non-laser-based Cold Metal Transfer (CMT) cladding and methods that utilize high intensity infrared (IR) light. This paper introduces some of such highly innovative cladding techniques and highlights some microstructural and geometrical features, abrasion and sliding wear, and wet corrosion properties of Fe-, Ni- and Co-based metallic coatings manufactured by novel laser and CMT cladding methods. The research results evidence that with the choice of optimal processing parameters, novel cladding techniques are capable of manufacturing high performance weld overlays with the properties equivalent or near to corresponding wrought alloys and reference overlays with net deposition rates of approximately 5 kg/h and more. Overall, the presented work suggests that discussed methods have high potential in surfacing of new and remanufacturing of service-damaged surfaces in high value components, in building up complex features on existing components and also in near net shape additive manufacturing of functional 3D objects.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Materials Science, Research group: Surface Engineering, Research group: Materials Characterization, Department of Mechanical Engineering and Industrial Systems, Research area: Manufacturing and Automation, Technology Centre Ketek Ltd.
Authors: Tuominen, J., Näkki, J., Pajukoski, H., Nyyssönen, T., Ristonen, T., Peltola, T., Vuoristo, P.
Number of pages: 13
Pages: 105-117
Publication date: Jan 2015

Host publication information
Title of host publication: Surface Modification Technologies XXVIII : Proceedings of the 28th International Conference on Surface Modification Technologies
Publisher: Valardocs
Editors: Sudarshan, T., Vuoristo, P., Koivuluoto, H.
ISBN (Electronic): 978-81-926196-1-3
Keywords: Cladding, Additive manufacturing, Laser, CMT, Metallien 3D-tulostus, 3D printing, Remanufacturing, Uudelleenvalmistus, Digital manufacturing, Digitaalinen valmistus

Bibliographical note
xoa ei tarkistettu

ORG=mol,0.5
ORG=mei,0.5
Research output: Scientific - peer-review › Article

A model for anisotropic magnetostriction

General information
State: Published
Ministry of Education publication type: B3 Non-refereed article in conference proceedings
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics, Lund University, Aalto University
Authors: Belahcen, A., Kouhia, R., Rasilo, P., Ristinmaa, M.
Number of pages: 3
Pages: 201-203
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the XII Finnish Mechanics Days
A new method to calculate natural convection heat transfer from a non-isothermal fin array

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics, Research group: Lämpö- ja virtaustekniikka
Authors: Lampio, K., Karvinen, R.
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the 7th Baltic Heat Transfer Conference, August 24-26 2015, Tallinn Estonia
Place of publication: Tallinn
Publisher: Tallinn University of Technology
Editors: Neshumayev, D., Sunden, B.
ISBN (Print): 978-9949-23-817-0

Publication series
Name: Baltic Heat Transfer Conference BHTC
Publisher: Tallinn University of Technology

Brownfield process for the rationalisation of existing product variety towards a modular product family

Modularisation, product platforms, product families and product configuration are efficient product structuring tactics for providing of product variants for customers. This paper studies how the design information related to designing of modular product family that supports product configuration can be structured and how to support defining of this kind of design information in a design situation in which existing product assortment should be rationalised towards a modular product family that supports product configuration. Research approach bases on literature review and empirical findings. Categorisation to five design information elements including partitioning logic, set of modules, interfaces, architecture and configuration knowledge is suggested. Existing methods consider partly or as different combinations these elements but considering of all of them is rare although all of them have been recognised as important. Thus a design method known as the Brownfield Process is introduced. Steps of the method are tested in industrial cases. As a conclusion we state that the method can be applied also to other cases in which rationalisation of existing product assortment is sought.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Design, Development and LCM
Authors: Pakkanen, J., Juuti, T., Lehtonen, T.
Number of pages: 10
Publication date: 2015

Host publication information
Title of host publication: ICED 15, vol 7: Product Modularisation, Product Architecture, Systems Engineering, Product Service Systems
Volume: 7
Publisher: The Design Society
Editors: Weber, C., Husung, S., Cascini, G., Cantamessa, M., Marjanovic, D., Rotini, F.
ISBN (Print): 978-1-904670-70-4

Publication series
Name: International Conference on Engineering Design
Publisher: DESIGN SOC
Experimental and numerical study of a choke valve in a turbulent flow
This study investigates a flow past a choke valve by experimental and numerical means. The flow profile after a choke valve with high Reynolds number of approximately 1,000,000 was measured using a LDV and computed using RANS simulations. Two turbulence models were used for the simulation, namely k-ε and k-ω turbulence models. It was found out that the k-ω model produces more similar results to LDV measurements than the k-ε model. This study also reports citable flow profiles past a choke valve computed by both turbulence models. Furthermore, the accuracy of the LDV based volume flow measurements was also discussed. The volume flow estimates were compared with simulation results, and with flow meter results. Results showed that LDV can be used for volume flow estimation even in unsymmetrical situations, such as after the choke valve, with error ranging from 0.3% to 2.6%.

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics, VTT Technical Research Centre of Finland
Authors: Huovinen, M., Kolehmainen, J., Koponen, P., Nissilä, T., Saarenrinne, P.
Number of pages: 11
Pages: 151-161
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Flow Measurement and Instrumentation
Volume: 45
ISSN (Print): 0955-5986
Ratings:
Scopus rating (2016): SJR 0.53 SNIP 1.355 CiteScore 1.45
Scopus rating (2015): SJR 0.533 SNIP 1.642 CiteScore 1.67
Scopus rating (2014): SJR 0.51 SNIP 1.647 CiteScore 1.52
Scopus rating (2013): SJR 0.567 SNIP 1.927 CiteScore 1.6
Scopus rating (2012): SJR 0.491 SNIP 1.697 CiteScore 1.35
Scopus rating (2011): SJR 0.602 SNIP 1.641 CiteScore 1.38
Scopus rating (2010): SJR 0.591 SNIP 1.511
Scopus rating (2009): SJR 0.466 SNIP 1.538
Scopus rating (2008): SJR 0.616 SNIP 1.821
Scopus rating (2007): SJR 0.391 SNIP 1.363
Scopus rating (2006): SJR 0.349 SNIP 1.268
Scopus rating (2005): SJR 0.419 SNIP 1.134
Scopus rating (2004): SJR 0.332 SNIP 1.142
Scopus rating (2003): SJR 0.332 SNIP 0.864
Scopus rating (2002): SJR 0.477 SNIP 1.057
Scopus rating (2001): SJR 0.29 SNIP 0.617
Scopus rating (2000): SJR 0.916 SNIP 1.312
Scopus rating (1999): SJR 0.361 SNIP 0.625
Original language: English
DOIs:
10.1016/j.flowmeasinst.2015.06.005
Research output: Scientific · peer-review › Article

Industrial Tools for micromanipulation

General information
State: Published
Micro-factories

Micro- and desktop factories are small-size production systems suitable for the manufacture of small products with micro- and/or macro-size features. The development originates in Japan, where small machines were developed in order to save resources when producing small products. In the late 1990s, the research spread around the world, and since then multiple miniaturized production systems, both academic and commercial, have been developed. Academic research literature speculates with several advantages of using miniaturized production equipment ranging from reduced use of energy and other resources to better operator ergonomics, and from greater equipment flexibility to ubiquitous manufacturing (manufacturing on the spot). This paper will give a thorough introduction to existing micro-factory solutions and their potential application areas. It will also discuss the benefits of miniaturized production systems compared to traditional larger scale systems from three sustainability perspectives, namely environmental, economic, and social ones.

General information

State: Published
Authors: Gauthier, M., Clevy, C., Kallio, P., Heriban, D.
Number of pages: 23
Pages: 369-392
Publication date: 2015

Host publication information

Title of host publication: Micro- and Nanomanipulation Tools
Publisher: Wiley
Editors: Sun, Y., Liu, X.
ISBN (Print): 978-3-527-33784-2
ISBN (Electronic): 978-3-527-69022-0

Publication series

Name: Advanced Micro & Nanosystems
Publisher: Wiley-VCH
Research output: Scientific > Chapter

Some aspects on efficient solution of creep problems

Integration of inelastic constitutive models by implicit schemes, require local Newton’s iteration to solve the discretized non-linear evolution equations at the integration point level. Choise of the starting values in the Newton’s iteration affects on the success of the iteration at the local integration point level. This note describes a simple modification on the approach proposed by Schreyer giving increased robustness on the local iteration process. Also the effect of line search and quasi-Newton methods in the solution of the global equilibrium iterations is investigated.

General information

State: Published
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Engineering Intelligence, Research area: Life-cycle Management, Research area: Manufacturing and Automation
Authors: Järvenpää, E., Heikkilä, R., Siltala, N., Prusi, T., Tuokko, R.
Pages: 549-579
Publication date: 2015

Host publication information

Title of host publication: Micromanufacturing Engineering and Technology
Publisher: Elsevier
Edition: 2
ISBN (Print): 978-0-323-31149-6
Keywords: Desktop factory, Micro-factory, Modular production system, Reconfigurable production system, Sustainable manufacturing, TUT-micro-factory concept
DOIs:
10.1016/B978-0-323-31149-6.00023-2
Research output: Scientific > Chapter
Teollinen internet täydentää pk-yritysten palveluita

General information
State: Published
Ministry of Education publication type: D1 Article in a trade journal
Organisations: Department of Industrial Management, Research group: Center for Research on Operations Projects and Services, Department of Mechanical Engineering and Industrial Systems, Research area: Life-cycle Management, Research area: Engineering Intelligence
Authors: Väliaho, V., Martinsuo, M., Koskinen, K., Aaltonen, J.
Number of pages: 3
Pages: 36-38
Publication date: 2015
Peer-reviewed: Unknown

Using maintenance data for extended warranty simulation

General information
State: Published
Ministry of Education publication type: D3 Professional conference proceedings
Organisations: Department of Mechanical Engineering and Industrial Systems, Research group: Käyttövarmuuden suunnittelu ja kunnossapito, Research area: Life-cycle Management
Authors: Mahlamäki, K., Jokinen, J., Borgman, J., Niemi, A., Rämänen, J.
Number of pages: 7
Publication date: 2015

Host publication information
Title of host publication: COMADEM 2014, Implications of life cycle analysis in asset and maintenance management, 16-18 September 2014, Brisbane Convention and Exhibition Centre, Australia

Bibliographical note
Contributor organisation=mei,FACT1=1
Portfolio EDEND: 2015-01-14
Ei ISBN
Source: researchoutputwizard
Source-ID: 22
Research output: Professional › Conference contribution
Method and apparatus for cooling material by atomised spray

The invention relates to a method and apparatus for tempering material. According to the invention, one or more liquids are atomized by at least one sprayer into droplets which are guided towards a surface of a hot material so that at least some of the droplets collide with the surface of the hot material and evaporate, thus removing thermal energy from the surface layer of the hot material. Impact members may be used to further reduce the size of the droplets. The droplets may be guided to the surface by a separate guiding gas flow.

General information

State: Published
Ministry of Education publication type: H1 Granted patent
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Applied Mechanics, Research group: Lämpö- ja virtaustekniikka, BENEQ OY
Authors: Ahonen, S., Karvinen, R., Vainio, T.
Publication date: 31 Dec 2014

Publication information

IPC: C03B 27/ 02 A I
Patent number: CN102803520
Priority date: 15/06/10
Priority number: WO2010FI50499
Original language: English
Source: espacenet
Source-ID: CN102803520
Research output: Scientific › Patent

Application of Design Review to Probabilistic Risk Assessment in a Large Investment Project

General information

State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Virtanen, S., Penttinen, J., Kiiski, M., Jokinen, J.
Number of pages: 12
Pages: 1-12
Publication date: 2014

Host publication information

Title of host publication: Proceedings of the Probabilistic Safety Assessment and Management PSAM12, June 2014, Honolulu, Hawaii
Links:

Bibliographical note

Contribution: organisation=mei,FACT1=1
Portfolio EDEND: 2014-12-13
Source: researchoutputwizard
Source-ID: 1754
Research output: Scientific - peer-review › Conference contribution

Concerns over students role as test users in virtual environments

General information

State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Tiainen, T., Ellman, A.
Number of pages: 8
Pages: 11-18
Publication date: 2014

Host publication information

Title of host publication: Proceedings of the 18th Academic MindTreK Conference 2014 "Media business, management, content & services" 4-6 November, 2014, Tampere, Finland
Place of publication: New York, NY
EU Emission Trading Related CO2 Monitoring in Power Plants

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Automation Science and Engineering
Authors: Majanne, Y., Korpela, T., Uotila, T.
Number of pages: 6
Pages: 1361-1366
Publication date: 2014

Host publication information
Title of host publication: Proceedings of 19th IFAC World Congress, Cape Town, South Africa, August 24-29, 2014
Publisher: International Federation of Automatic Control
Editors: Boje, E., Xia, X.

Publication series
Name: IFAC proceedings volumes
Publisher: International Federation of Automatic Control
Volume: 19
No.: 1
ISSN (Print): 1474-6670
DOIs: 10.3182/20140824-6-ZA-1003.02230
Links: http://www.ifac-papersonline.net/Detailed/65641.html

Functional failure modes cause-consequence logic suited for mobile robots used at scientific facilities

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Douzi, I. K., Virtanen, S., Bonnal, P., Verma, A.
Number of pages: 9
Pages: 10-18
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Reliability Engineering and System Safety
Volume: 129
ISSN (Print): 0951-8320
Ratings:
Scopus rating (2016): SJR 1.407 SNIP 2.366 CiteScore 3.78
Scopus rating (2015): SJR 1.373 SNIP 2.403 CiteScore 3.93
Scopus rating (2014): SJR 1.467 SNIP 2.714 CiteScore 3.4
Image based measurement techniques for particulate flows

General information
State: Published
Ministry of Education publication type: G5 Doctoral dissertation (article)
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Kolehmainen, J.
Number of pages: 98
Publication date: 2014

Publication information
Place of publication: Tampere
Publisher: Tampere University of Technology
Original language: English

Publication series
Name: Tampere University of Technology, Publication
Publisher: Tampere University of Technology
Volume: 1258
ISSN (Print): 1459-2045

Bibliographical note
Awarding institution:Tampere University of Technology
Source: researchoutputwizard
Source-ID: 743
Research output: Collection of articles › Doctoral Thesis

Innovative tool for specifying customer requirements

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Method and apparatus for mechanical defibration of wood

General information
State: Published
Ministry of Education publication type: H1 Granted patent
Organisations: Former organisation of the author
Authors: Lukander, M., Björkqvist, T., Tuovinen, O.
Publication date: 2014

Publication information
Patent number: Pat. CA 2608207 C
Priority date: 25/03/14
Priority number: 2005/06/03 US 60/686,919 : 686919
Original language: English

Bibliographical note
US 7819149 B2 (julk2011) : CA2608207A1, CN101208472B
Contribution: organisation=ase,FACT1=1
Portfolio EDEND: 2014-10-08
Source: researchoutputwizard
Source-ID: 971
Research output: Scientific › Patent

Modeling of Age-Dependent Failure Tendency from Incomplete Data
This paper addresses modeling of age-dependent failure rates from incomplete data that includes interval-censored failure ages. Two estimators for cumulative failure rates are presented: a simple non-parametric estimator and a maximum-likelihood method based on the gamma distribution and the non-homogeneous Poisson process. The maximum-likelihood fit of familiar parametric models (e.g., the power law) to the available field data from an aircraft component was far from satisfactory, so a special three-parameter model function had to be worked out. The maximum-likelihood estimate obtained is then used for repeated random generation of different data sets akin to the field data. This way the effect of data set size, censoring rate, and randomness on the non-parametric estimate can be analyzed to get practical appraisals.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems, Research area: Life-cycle Management, Research group: Käyttövarmuuden suunnittelu ja kunnossapito
Authors: Hagmark, P., Laitinen, J.
Number of pages: 11
Pages: 449-459
Publication date: 2014

Host publication information
Title of host publication: Engineering Asset Management 2011 : Proceedings of the Sixth World Congress on Engineering Asset Management
Place of publication: London
Publisher: Springer-Verlag London Limited
Editors: Lee, J., Ni, J., Sarangapani, J., Mathew, J.
ISBN (Print): 978-1-4471-4993-4
Simulation Based Methods for Flexible Maintenance Program Development

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mechanical Engineering and Industrial Systems, Department of Industrial Management
Authors: Aaltonen, J., Koskinen, K. T., Vainio, H., Martinsuo, M.
Number of pages: 5
Pages: 446-450
Publication date: 2014

Host publication information
Title of host publication: EuroMaintenance 2014, Congress proceedings May 5-7, Helsinki, Finland, 22nd European Congress & Expo on Maintenance and Asset Management, 6th World Congress & Global Forum on Maintenance and Asset Management
Publisher: European Federation of National Maintenance Societies
ISBN (Print): 978-952-67981-1-0

Bibliographical note
Contribution: organisation=mei,FACT1=0.9
Contribution: organisation=tta,FACT2=0.1
Portfolio EDEND: 2014-12-30
Publisher name: European Federation of National Maintenance Societies
Source: researchoutputwizard
Source-ID: 38
Research output: Scientific - peer-review → Conference contribution

User Interpretations of Virtual Prototypes: Physical Place Matters

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Kaapu, T., Tiainen, T., Ellman, A.
Number of pages: 22
Pages: 1-22
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Scandinavian Journal of Information Systems
Volume: 25
Issue number: 2
Article number: 4
ISSN (Print): 0905-0167
Ratings:
Scopus rating (2016): SJR 0.234 SNIP 0.524 CiteScore 0.74
Scopus rating (2015): SJR 0.17 SNIP 0.505 CiteScore 0.52
Scopus rating (2014): SJR 0.152 SNIP 0.237 CiteScore 0.5
Scopus rating (2013): SJR 0.117 SNIP 0.523 CiteScore 0.27
Scopus rating (2012): SJR 0.191 SNIP 1.85 CiteScore 0.38
Original language: English
Links:
http://aisel.aisnet.org/sjis/vol25/iss2/4

Bibliographical note
Virtual prototypes reveal more development ideas: comparison between customers’ evaluation of virtual and physical prototypes

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Tiainen, T., Ellman, A., Kaapu, T.
Number of pages: 11
Pages: 169-180
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Virtual and Physical Prototyping
Volume: 9
Issue number: 3
ISSN (Print): 1745-2759
Ratings:
Scopus rating (2016): SJR 0.661 SNIP 1.526 CiteScore 3.31
Scopus rating (2015): SJR 0.393 SNIP 0.825 CiteScore 1.23
Scopus rating (2014): SJR 0.477 SNIP 0.978 CiteScore 1.66
Scopus rating (2013): SJR 0.37 SNIP 0.697 CiteScore 1.17
Scopus rating (2012): SJR 0.216 SNIP 0.884 CiteScore 0.71
Scopus rating (2011): SJR 0.236 SNIP 0.669 CiteScore 0.77
Scopus rating (2010): SJR 0.31 SNIP 0.906
Scopus rating (2009): SJR 0.356 SNIP 0.753
Scopus rating (2008): SJR 0.396 SNIP 0.628
Scopus rating (2007): SJR 0.468 SNIP 0.734
Original language: English
DOIs:
10.1080/17452759.2014.934573
Links:
http://www.tandfonline.com/action/journalInformation?journalCode=nvpp20#.U7DYSrHACM0

Bibliographical note
Contribution: organisation=mei,FACT1=1
Portfolio EDEND: 2014-12-03
Publisher name: Taylor & Francis
Research output: Scientific - peer-review
Source-ID: 1627

Water Hydraulics Pushes Into High-Pressure Systems

General information
State: Published
Ministry of Education publication type: D1 Article in a trade journal
Organisations: Department of Mechanical Engineering and Industrial Systems
Authors: Koskinen, K. T., Aaltonen, J.
Number of pages: 4
Pages: 84-89
Publication date: 2014
Peer-reviewed: Unknown

Publication information
Journal: Hydraulics & Pneumatics
Volume: 67
Issue number: 2
Kivihiilen ja puupelletin seospoltto energiantuotannossa

General information
State: Published
Ministry of Education publication type: D1 Article in a trade journal
Organisations: Department of Automation Science and Engineering
Authors: Rantsi, J., Judl, J., Koskela, S., Karvosenoja, N., Korpela, T.
Number of pages: 3
Pages: 4-6
Publication date: 2013
Peer-reviewed: Unknown

Publication information
Journal: Ilmansuojelu
Issue number: 4
Original language: Finnish
Links:

Bibliographical note
Contribution: organisation=ase,FACT1=1
Portfolio EDEND: 2013-12-29
Publisher name: Ilmansuojeluyhdistys ry
Source: researchoutputwizard
Source-ID: 3231
Research output: Professional > Article