Integrating mobile orienteering to team forming activity in a software engineering course

One of the most important skills software engineers need when entering work life is working in teams, including communicating, collaborating, as well as coordinating work in a team. This paper presents a team building activity aiming to support the first phases of team formation with a mobile orienteering activity. Created tasks at orienteering checkpoints were related to communication, collaboration and work division. Students were enthusiastic about the activity and expressed in their group reports on the activity that it supported the team building activity well, helped break the ice and supported agreeing the ways of working. Students also liked getting out of the classroom. The approach seems promising and we will investigate in the future similar type of activities in the first phases of team formation as well as will explore further integrating physical activity to the exercise sessions.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Pervasive Computing, Research area: User experience
Authors: Väätäjä, H., Ahtinen, A.
Publication date: Sep 2016

Host publication information
Title of host publication: 44th Annual Conference Of The European Society For Engineering Education : 12-15 September 2016, Tampere, Finland
Place of publication: Tampere
ISBN (Print): 9782873520144
Keywords: Affective experience, Higher Education
ASJC Scopus subject areas: Education
Links:
Research output: Scientific - peer-review › Conference contribution
I feel great - university students affective experiences on learning and teaching

According to Kolb [1], experience is the source of learning and development. This is a statement that serves as the starting point of this study. We argue that the role of affective experiences cannot be overlooked when evaluating university learning and teaching. In the present paper, we will study students’ affective experiences in higher education setting, specifically in engineering education in a technological university. The perceived affective experiences are empirically analysed through a mystery shopper data set, which was gathered in the case university by a group of students. The study bases theoretically on affective experiences framework, more familiar from the consumer behaviour research stream. The aim of the study is to analyse what kinds of affective experiences students recognise when studying in a technical university and further to elaborate, how these affective experiences could be used to increase student engagement and the students’ motivation to learn. The study provides an innovative approach to university learning and teaching by applying mystery shopper method and affective experience approach from more businessoriented disciplines. The contribution to education science is the increased understanding of the role of affective experience in learning.
Computer-supported collaborative learning: Praxes in new cell-oriented configurable PC-classroom

Currently, technology-enhanced learning environments are a research hotspot in engineering education. Universities invest in modern environments equipped with the newest audiovisual hardware, computers and web-technologies. These environments support learner-centred model of education, which highlights active role of learners, learning-by-doing, and collaborative learner autonomy in a democratic atmosphere. Therefore, traditional teacher-led classrooms can be transformed to more diverse and more creative environments in which teachers and learners have relatively different roles compared with the traditional classroom.

In this paper, we present layout, construction and hardware of our newly developed technology-mediated, configurable, and cell-oriented PC-classroom, which play a key role in our teaching development. We exemplify how the classroom has helped us to improve our automation science and control engineering education. To be more specific, we have adopted the well-known concept of computer-supported collaborative learning (CSCL), which concerns how students can learn together with the help of computers. We also demonstrate how redefining and redesigning the nature of activities occurring in modern learning environments can improve the effectiveness of contact teaching, and hence, allow learning episodes to be more impactful compared with the traditional teacher-led classroom. We would like to pinpoint that redefinition and redesign have allowed us, as teachers, to take the position of a facilitating guide, or mentor, which work in close cooperation with students, and thereby, is able to strengthen the knowledge level of students through intellectual face-to-face discussion as well as through technology-supported communication.

Furthermore, our new classroom has enabled hands-on, competitive, cyber-physical attack-defence events to be conducted, which improve our automation security training. The events have invited participants from industry and academia, but most importantly, they have involved students. During the events, we have offered opportunities for students to make demonstration-of-skills to the participants from business. As a consequence, the new environment has enabled acts of openings for university-business cooperation in terms of education and recruit, free of charge. To our experience and according to student feedback, our redefined ways of conducting teaching has improved student motivation as well as increased their timely investment towards learning activities, which has eventually translated to better grades and overall satisfaction.
knowledge level of students via on-site professional facilitation.

To be more specific, prelab activities were delivered using a virtual laboratory and a teaser video. The main role of the teaser video is to allow a remote visit to the physical laboratory room before students actually enter there. The teaser video delivers interesting visual information of the laboratory equipment when it is fully operational, and hence, students can identify causal connections of all devices affecting the physical system from anywhere at any time. The virtual laboratory, on the other hand, enables students to observe several physical quantities and their curvatures which cannot be observed nor displayed by the physical devices in the laboratory room. Furthermore, the open-ended nature of the virtual laboratory also enables students to use it as a subject for their own active research. The teaser video and virtual laboratory help students to develop intuition, and they also strengthen students’ preparation in a timely fashion manner. As a result, more time is released for active on-site student collaboration and teacher facilitated intellectual discussion. Interestingly, the virtual laboratory is key to establish highly collaborative and activity-based learning environment inside the laboratory room. Finally, it is shown that the new implementation of the laboratory work significantly reduces implementation costs.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Automation Science and Engineering, Research area: Information Systems in Automation, Dynamic Systems
Authors: Pyrhönen, V.
Number of pages: 9
Publication date: 2016

Host publication information
Title of host publication: SEFI conference 2016: Engineering Education on Top of the World: Industry University Cooperation
ISBN (Electronic): 9782873520144
Keywords: Blended Learning, Cost Reduction, Flipped Learning, Laboratory
ASJC Scopus subject areas: Education
Links:
Research output: Scientific - peer-review › Conference contribution

Self-regulation and competence in work-based learning
This chapter discusses the connection between self-regulation and competence in both formal and informal contexts of vocational and professional education. The goal is to show that self-regulation has a theoretical linkage to a multifaceted and holistic approach to competence and that self-regulatory abilities play a role in the development of vocational competence. Different theoretical approaches to self-regulation and competence and the link between the two concepts are discussed. We argue that self-regulation plays an important role in the development of competence, as it is needed to...
acquire competencies, unified sets of knowledge, skills and views. Self-regulation acts as an indirect factor between competencies and direct formal, non-formal and informal learning processes (e.g. vocational studies, leisure time activities and work) aimed to develop them. In this chapter, we present results of empirical studies on self-regulation and competence to support this argumentation. Several studies with vocational skills competition competitors show that strong self-regulatory abilities are related to successful competition performances. Also results from a study with Finnish in-service air traffic controllers indicate a link between vocational excellence and self-regulative action. Our conclusion is that self-regulatory skills should be taught in addition to the vocation-specific skills in competence-based vocational and professional education.

General information
State: Published
Ministry of Education publication type: A3 Part of a book or another research book
Organisations: Teaching and Learning Services, School of Education, University of Tampere
Authors: Nokelainen, P., Kaisvuo, H., Pylväs, L.
Pages: 775-793
Publication date: 2016

Host publication information
Title of host publication: Competence-based Vocational and Professional Education. Bridging the Worlds of Work and Education
Publisher: Springer US
Editor: Mulder, M.
ISBN (Print): 978-3-319-41711-0
ISBN (Electronic): 978-3-319-41713-4

Publication series
Name: Technical and Vocational Education and Training: Issues, Concerns and Prospects
Volume: 23
ISSN (Print): 1871-3041
ASJC Scopus subject areas: Education
DOIs: 10.1007/978-3-319-41713-4_36
Research output: Scientific - peer-review › Chapter

STACK assignments in university mathematics education
Students' learning process can be assisted and diversified with the help of e-learning tools and virtual environments. In Tampere University of Technology, the aim is to utilize software that delivers assignments, checks students' answers and gives feedback to the students, in the mathematics courses. The software that has been used is called STACK, which can be integrated into Moodle. STACK assignments have been created as a part of the STEM education material bank Abacus.

Written feedback can be generated in STACK assignments as necessary. Feedback guides the students to identify their errors and revise them. It can also motivate the students to try again after giving a wrong answer.

This study concerns the use of STACK in TUT mathematics courses. Especially we are interested in
- how do the points gathered and the time of the last submission in STACK exercises correlate with the exam grades?
- when and for how long do the students solve the STACK assignments?
- how does the activity in STACK differ between honours and engineering mathematics students?

In STACK assignments, the students were able to give their answers in Moodle. For each lecture week, they had one week to solve and return the answers. All the student activity related to the STACK assignments was saved in the Moodle logs. Data was analysed with Matlab by the means of educational data mining.

We observed that the activity in STACK was the greatest near the deadline. We also found that, on average, the better the grade, the earlier the students gave their final answers in STACK. Additionally, the honours mathematics students made their submissions earlier: many of them considered STACK exercises as a good way to revise the subjects considered in the lectures, while engineering mathematics students mostly rehearsed with STACK near the deadline.

According to the survey polls, students found the STACK exercises as a nice and efficient way to rehearse and learn mathematics. Especially, the instant feedback was mostly appreciated. However, some of the students felt writing the answers with a computer unappealing, but generally this aspect was not considered a problem.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mathematics, Research group: MAT Positioning
MYSTERY SHOPPERS RECOGNISING KNOWLEDGE SHARING BARRIERS IN HIGHER EDUCATION

This study focuses on the knowledge sharing barriers in the space between learning and teaching in higher education as reported by mystery shoppers. There is surprisingly little context-specific research on learning and teaching in a knowledge intensive community like a university from the perspective of knowledge management (KM). Discussing learning and teaching within KM is based on considering students controversially as customers or stakeholders. Thus including them more meaningfully in assessing and developing teaching practices, or knowledge flow, seems justified. The specific aim of this paper is to first recognise possible knowledge sharing barriers and then categorize such barriers emerging from the material into three larger domains, namely, individual barriers, technological barriers and organisational barriers.

There were 45 students from all faculties participating in a mystery shopper project in a Finnish university of technology. They observed their learning experience for six weeks in order to supplement data from other sources, to add a student voice on the process of developing learning and teaching in higher education.

The research approach represents qualitative content analysis in which knowledge-sharing barriers were recognised from the qualitative mystery shopper data. The results identify teaching practices that contribute to creating knowledge sharing barriers. More detailed and almost real-time contextual activity sampling is suggested as a method for further study and also an avenue for instant feedback for teaching staff. The results will provide data on current knowledge practices and learning processes in a technical university in Finland.

Supporting Learning with Wireless Sensor Data

General information
State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Pori Department
Authors: Multisilta, J., Perttula, A.
Number of pages: 18
Pages: 95-112
Publication date: 2013
Peer-reviewed: Yes