Vygotsky's Zone of Proximal Development in Connection with Technology-Enhanced Learning Environments

Technology-enhanced learning environments (TELEs) that support social interaction between teachers and learners are common in engineering higher education institutes. TELEs are often equipped with professional hardware and software, which not only enable learners to gain access to variety of learning instruments, but also allow learners to practice with authentic equipment and design tools. Furthermore, teachers can use TELEs and scaffolding principles to organize teaching in several ways that are beyond traditional classrooms. This paper discusses the potential of TELEs to shape the zone of proximal development (ZPD) of learners such that they could do harder learning activities than would otherwise be possible in less conducive environments. In addition, an example of a conducive TELE is presented that might have enlarged ZPD of learners, and, as such, may partly explain good learning outcomes obtained. The illustrations in this paper may help teachers to gain better understanding of the benefits of environment creation as well as to organize learning episodes that are suitable for ZPD-based thinking.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Authors: Pyrhönen, V.
Number of pages: 8
Pages: 1206-1213
Publication date: 18 Sep 2017

Host publication information
Title of host publication: Proceedings of the 45th SEFI Annual Conference
Publisher: European Society for Engineering Education SEFI
Editors: Quadrado, J., Bernardino, J., Rocha, J.
ISBN (Electronic): 978-989-98875-7-2
Keywords: Zone of Proximal Development, Scaffolding, Technology-Enhanced Learning Environments, Engineering Education
ASJC Scopus subject areas: Education

Bibliographical note
JUFOID=8743
Research output: Scientific - peer-review › Conference contribution

STACK assignments in university mathematics education
Students' learning process can be assisted and diversified with the help of e-learning tools and virtual environments. In Tampere University of Technology, the aim is to utilize software that delivers assignments, checks students' answers and gives feedback to the students, in the mathematics courses. The software that has been used is called STACK, which can be integrated into Moodle. STACK assignments have been created as a part of the STEM education material bank Abacus.

Written feedback can be generated in STACK assignments as necessary. Feedback guides the students to identify their errors and revise them. It can also motivate the students to try again after giving a wrong answer.

This study concerns the use of STACK in TUT mathematics courses. Especially we are interested in
- how do the points gathered and the time of the last submission in STACK exercises correlate with the exam grades?
- when and for how long do the students solve the STACK assignments?
- how does the activity in STACK differ between honours and engineering mathematics students?

In STACK assignments, the students were able to give their answers in Moodle. For each lecture week, they had one week to solve and return the answers. All the student activity related to the STACK assignments was saved in the Moodle logs. Data was analysed with Matlab by the means of educational data mining.

We observed that the activity in STACK was the greatest near the deadline. We also found that, on average, the better the grade, the earlier the students gave their final answers in STACK. Additionally, the honours mathematics students made their submissions earlier: many of them considered STACK exercises as a good way to revise the subjects considered in the lectures, while engineering mathematics students mostly rehearsed with STACK near the deadline.

According to the survey polls, students found the STACK exercises as a nice and efficient way to rehearse and learn mathematics. Especially, the instant feedback was mostly appreciated. However, some of the students felt writing the answers with a computer unappealing, but generally this aspect was not considered a problem.

General information
State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Mathematics, Research group: MAT Positioning
Authors: Mäkelä, A., Ali-Löytty, S., Humaloja, J., Joutsenlahti, J., Kauhanen, J., Kaarakka, T.
Number of pages: 14
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the 44th SEFI Conference, 12 - 15 September 2016, Tampere, Finland
Publisher: European Society for Engineering Education SEFI
ISBN (Print): 9782873520144
Keywords: STACK, web-assisted learning tools
ASJC Scopus subject areas: Education
Links:
Research output: Scientific - peer-review › Conference contribution