Computer-supported collaborative learning: Praxes in new cell-oriented configurable PC-classroom

Currently, technology-enhanced learning environments are a research hotspot in engineering education. Universities invest in modern environments equipped with the newest audiovisual hardware, computers and web-technologies. These environments support learner-centred model of education, which highlights active role of learners, learning-by-doing, and collaborative learner autonomy in a democratic atmosphere. Therefore, traditional teacher-led classrooms can be transformed to more diverse and more creative environments in which teachers and learners have relatively different roles compared with the traditional classroom.

In this paper, we present layout, construction and hardware of our newly developed technology-mediated, configurable, and cell-oriented PC-classroom, which play a key role in our teaching development. We exemplify how the classroom has helped us to improve our automation science and control engineering education. To be more specific, we have adopted the well-known concept of computer-supported collaborative learning (CSCL), which concerns how students can learn together with the help of computers. We also demonstrate how redefining and redesigning the nature of activities occurring in modern learning environments can improve the effectiveness of contact teaching, and hence, allow learning episodes to be more impactful compared with the traditional teacher-led classroom. We would like to pinpoint that redefinition and redesign have allowed us, as teachers, to take the position of a facilitating guide, or mentor, which work in close cooperation with students, and thereby, is able to strengthen the knowledge level of students through intellectual face-to-face discussion as well as through technology-supported communication.

Furthermore, our new classroom has enabled hands-on, competitive, cyber-physical attack-defence events to be conducted, which improve our automation security training. The events have invited participants from industry and academia, but most importantly, they have involved students. During the events, we have offered opportunities for students to make demonstration-of-skills to the participants from business. As a consequence, the new environment has enabled acts of openings for university-business cooperation in terms of education and recruit, free of charge. To our experience and according to student feedback, our redefined ways of conducting teaching has improved student motivation as well as increased their timely investment towards learning activities, which has eventually translated to better grades and overall satisfaction.

Enhancing old laboratory experiment using flipped learning: Towards self-regulating collaborative groups in blended learning environment

This paper demonstrates how learning outcome of a traditional student laboratory has been improved using blended and flipped learnings in a cost-effective way. The innovation process was based on four important elements: the subject matter, educational theory, redefinition of the roles of teacher and students, and technology-driven utilities intended for education. Also, prelab activities were refurbished in order to better prepare students for the actual experiments. Teaching and learning relationship was redesigned to support learner-centred model of education, and on-site activities occurring in the laboratory room were reformulated to advance self-regulation and learner autonomy. As a consequence, the role of teacher is steered towards mentor-like activity, and hence, a teacher-mentor can use his own expertise to strengthen the knowledge level of students via on-site professional facilitation.

To be more specific, prelab activities were delivered using a virtual laboratory and a teaser video. The main role of the teaser video is to allow a remote visit to the physical laboratory room before students actually enter there. The teaser video delivers interesting visual information of the laboratory equipment when it is fully operational, and hence, students can identify causal connections of all devices affecting the physical system from anywhere at any time. The virtual laboratory, on the other hand, enables students to observe several physical quantities and their curvatures which cannot be observed nor displayed by the physical devices in the laboratory room. Furthermore, the open-ended nature of the virtual laboratory also enables students to use it as a subject for their own active research. The teaser video and virtual
laboratory help students to develop intuition, and they also strengthen students’ preparation in a timely fashion manner. As a result, more time is released for active on-site student collaboration and teacher facilitated intellectual discussion. Interestingly, the virtual laboratory is key to establish highly collaborative and activity-based learning environment inside the laboratory room. Finally, it is shown that the new implementation of the laboratory work significantly reduces implementation costs.

General information

State: Published
Ministry of Education publication type: A4 Article in a conference publication
Organisations: Department of Automation Science and Engineering, Research area: Information Systems in Automation, Research area: Dynamic Systems
Authors: Pyrhönen, V.
Number of pages: 9
Publication date: 2016

Host publication information

Title of host publication: SEFI conference 2016 : Engineering Education on Top of the World: Industry University Cooperation
ISBN (Electronic): 9782873520144
Keywords: Blended Learning, Cost Reduction, Flipped Learning, Laboratory
ASJC Scopus subject areas: Education
Links:
Research output: Scientific - peer-review › Conference contribution

Rakennuskannan kehitys ja alueellinen sosioekonominen erityyminen

The status of socioeconomic segregation was investigated in Helsinki Metropolitan Area, City of Tampere, and City of Turku. Furthermore, the existence of statistically significant associations between changes in housing and building stock, and development of socioeconomic segregation was examined. The empirical analysis was performed in three separate phases, including spatial analysis, estimations of logit models, and finally, OLS estimations of regression models. The data was collected from grid-based monitoring system for spatial structure and urban form (YKR), spanning from 2000 to 2012. The size of one grid cell was 250 x 250 meters. For further analysis, the grid data was merged with a dataset containing locations and basic information on housing developments subsidized by the Housing Finance and Development Center of Finland (ARA).

It was found that the relative number of people living in socioeconomically segregated grid cells had increased in all areas during the study period. However, at the same time the boundary values for lower and upper quintiles of the variables indicating the status of socioeconomic segregation differentiated relatively little in the study period. Furthermore, statistically significant associations between changes in building stock and socioeconomic segregation were observed. Property types and housing tenures located in the grid cells were also found to be associated with the socioeconomic status of people living in those areas.

General information

State: Published
Ministry of Education publication type: A1 Journal article-refereed
Organisations: Department of Civil Engineering, Research group: Construction Processes
Authors: Kurvinen, A., Sorri, J.
Number of pages: 26
Pages: 109-134
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: JANUS: SOSIAALIPOLITIIKAN JA SOSIAALITYÖN TUTKIMUksen AIKAKAUSLEHTI
Volume: 24
Issue number: 4
ISSN (Print): 1235-7812
Original language: Finnish
ASJC Scopus subject areas: Urban Studies
Keywords: socioeconomic segregation, building stock, housing stock, real estate development, housing development
Links:
Research output: Scientific - peer-review › Article