Tampere University of Technology

TUTCRIS Research Portal

Surface Processing of Zirconia Ceramics by Laser

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Details

Original languageEnglish
Title of host publicationProceedings of the Twenty Eighth International Conference on Surface Modification Technologies
Pages275-284
Number of pages10
Publication statusPublished - 2014
Publication typeA4 Article in a conference publication
EventInternational Conference on Surface Modification Technologies - , Finland
Duration: 1 Jan 2000 → …

Conference

ConferenceInternational Conference on Surface Modification Technologies
CountryFinland
Period1/01/00 → …

Abstract

The aim of this study was to investigate phase transformations and glazing of zirconia bulk ceramic as a function of laser processing parameters. Zirconia-based ceramics have good material properties for a variety of applications. The main advantage of zirconia compared to other structural ceramics, like silicon-based ceramics and alumina, is its high fracture toughness (typically over 10MPa√m). This property is largely based on partial stabilization of zirconia, where a portion of the material is in metastable phase, enabling instantaneous phase transformation under mechanical load. This consumes energy otherwise provided to crack propagation. The stable phase of zirconia to exist in room temperature is monoclinic; therefore a rapid cycle of heating and cooling is necessary for achieving metastable tetragonal phase. Pulsed laser processing offers just the right type of thermal cycle for the aforementioned phase transformation to occur. In this study a nanosecond pulsed laser was used for surface processing of zirconia ceramic blocks.
During laser processing high energy can be concentrated into small area, causing sudden local heating, which in turn causes material to melt and vaporize instantly. However, heat dissipation remains small due to the short pulse length, leading to the desirable cycle. Temperatures in the process correlate with several parameters: pulse width, peak energy, repetition rate, pulse overlap, material properties and wavelength. Zirconia is a tough material to process in terms of material removal with laser ablation, since it tends to melt rather than evaporate.

Keywords

  • Laser, Zirconia, Ceramic

Publication forum classification

Field of science, Statistics Finland

Downloads statistics

No data available