Tampere University of Technology

TUTCRIS Research Portal

Target tracking via combination of particle filter and optimisation techniques

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)212-229
Number of pages18
JournalInternational Journal of Mathematical Modelling and Numerical Optimization
Volume7
Issue number2
DOIs
Publication statusPublished - 2016
Publication typeA1 Journal article-refereed

Abstract

Particle filters (PFs) have been used for the nonlinear estimation for a number of years. However, they suffer from the impoverishment phenomenon. It is brought by resampling which intends to prevent particle degradation, and therefore becomes the inherent weakness of this technique. To solve the problem of sample impoverishment and to improve the performance of the standard particle filter we propose a modification to this method by adding a sampling mechanism inspired by optimisation techniques, namely, the pattern search, particle swarm optimisation, differential evolution and Nelder-Mead algorithms. In the proposed methods, the true state of the target can be better expressed by the optimised particle set and the number of meaningful particles can be grown significantly. The efficiency of the proposed particle filters is supported by a truck-trailer problem. Simulations show that the hybridised particle filter with Nelder-Mead search is better than other optimisation approaches in terms of particle diversity.

Keywords

  • Differential evolution, Nelder-Mead, Particle filter, Particle swarm optimisation, Pattern search, PSO, Target tracking

Publication forum classification

Field of science, Statistics Finland