The effects of microstructure on erosive-abrasive wear behavior of carbide free bainitic and boron steels
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Professional
Details
Original language | English |
---|---|
Title of host publication | The 17th Nordic Symposium on Tribology - NORDTRIB 2016 14th - 17th June 2016 Aulanko, Hämeenlinna, Finland |
Publication status | Published - 2016 |
Publication type | D3 Professional conference proceedings |
Event | NORDIC SYMPOSIUM ON TRIBOLOGY: NORDTRIB - Duration: 1 Jan 1900 → … |
Conference
Conference | NORDIC SYMPOSIUM ON TRIBOLOGY |
---|---|
Period | 1/01/00 → … |
Abstract
The wear resistance of carbide free bainitic (CFB) microstructures have shown to be excellent in sliding, sliding-rolling and erosive-abrasive wear. Whereas, boron steels are often an economically favorable alternative used in applications subjected to erosive and abrasive wear. In this study the erosive-abrasive wear resistance of CFB and boron steels with different heat treatments were compared and the effect of microstructure on wear was investigated. An application oriented dry-pot laboratory test method with 8-10 mm granite gravel was used to produce erosive-abrasive wear environment. The tested materials were CFB and boron steels. The CFB steels had hardness values of 500 and 600 HV. The boron steels, both quenched and quenched and tempered, had a hardness of 500 HV. The influence of the microstructures on wear was studied by wear test results as well as by optical and scanning electron microscopy. The phase compositions were determined by XRD. The effect of wear, in addition to weight loss was also characterized by surface profilometry, hardness and hardness profile determinations. The wear resistance of the steels was compared with results achieved in a field test in an industrial mining application. Moreover, the effect of the different microstructures on wear behavior is discussed. The carbide free bainitic steels showed better wear performance than the martensitic boron steels. The boron steels were subjected to microcutting and microploughing, whereas the CFB steels exhibited more shallow impact craters with thin platelets.
ASJC Scopus subject areas
Keywords
- Steel, Erosion wear, Abrasive wear, Microstructure
Field of science, Statistics Finland
Downloads statistics
No data available