Tampere University of Technology

TUTCRIS Research Portal

The precision of the symmetry in Z-ring placement in Escherichia coli is hampered at critical temperatures

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Article number056002
JournalPhysical Biology
Volume15
Issue number5
DOIs
Publication statusPublished - 18 May 2018
Publication typeA1 Journal article-refereed

Abstract

Cell division in Escherichia coli is morphologically symmetric due to, among other things, the ability of these cells to place the Z-ring at midcell. Studies have reported that, at sub-optimal temperatures, this symmetry decreases at the single-cell level, but the causes remain unclear. Using fluorescence microscopy, we observe FtsZ-GFP and DAPI-stained nucleoids to assess the robustness of the symmetry of Z-ring formation and positioning in individual cells under sub-optimal and critical temperatures. We find the Z-ring formation and positioning to be robust at sub-optimal temperatures, as the Z-ring's mean width, density and displacement from midcell maintain similar levels of correlation to one another as at optimal temperatures. However, at critical temperatures, the Z-ring displacement from midcell is greatly increased. We present evidence showing that this is due to enhanced distance between the replicated nucleoids and, thus, reduced Z-ring density, which explains the weaker precision in setting a morphologically symmetric division site. This also occurs in rich media and is cumulative, i.e. combining richer media and critically high temperatures enhances the asymmetries in division, which is evidence that the causes are biophysical. To further support this, we show that the effects are reversible, i.e. shifting cells from optimal to critical, and then to optimal again, reduces and then enhances the symmetry in Z-ring positioning, respectively, as the width and density of the Z-ring return to normal values. Overall, our findings show that the Z-ring positioning in E. coli is a robust biophysical process under sub-optimal temperatures, and that critical temperatures cause significant asymmetries in division.

Keywords

  • asymmetry in cell division, critical temperatures, Escherichia coli, single-cell microscopy, Z-ring formation and positioning

Publication forum classification

Field of science, Statistics Finland