Use of diluted urine for cultivation of Chlorella vulgaris
Research output: Contribution to journal › Article › Scientific › peer-review
Standard
Use of diluted urine for cultivation of Chlorella vulgaris. / Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka.
In: Environmental Technology, Vol. 37, No. 9, 2016, p. 1159-1170.Research output: Contribution to journal › Article › Scientific › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Use of diluted urine for cultivation of Chlorella vulgaris
AU - Jaatinen, Sanna
AU - Lakaniemi, Aino-Maija
AU - Rintala, Jukka
PY - 2016
Y1 - 2016
N2 - Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.
AB - Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.
U2 - 10.1080/09593330.2015.1105300
DO - 10.1080/09593330.2015.1105300
M3 - Article
VL - 37
SP - 1159
EP - 1170
JO - Environmental Technology
JF - Environmental Technology
SN - 0959-3330
IS - 9
ER -