Tampere University of Technology

TUTCRIS Research Portal

Wireless Optogenetic Nanonetworks for Brain Stimulation: Device Model and Charging Protocols

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Pages (from-to)859-872
JournalIEEE Transactions on Nanobioscience
Volume16
Issue number8
Early online date18 Dec 2017
DOIs
Publication statusPublished - Dec 2017
Publication typeA1 Journal article-refereed

Abstract

In recent years, numerous research efforts have been dedicated towards developing efficient implantable devices for brain stimulation. However, there are limitations and challenges with the current technologies. They include neuron population stimulation instead of single neuron level, the size, the biocompatibility, and the device lifetime reliability in the patient’s brain. We have recently proposed the concept of wireless optogenetic nanonetworking devices (WiOptND) that could address the problem of long term deployment, and at the same time target single neuron stimulation utilizing ultrasonic as a mode for energy harvesting. Additionally, a number of charging protocols are also proposed, in order to minimize the quantity of energy required for charging, while ensuring minimum number of neural spike misfirings. These protocols include the simple Charge and Fire, which requires the full knowledge of the raster plots of neuron firing patterns, and the Predictive Sliding Detection Window, and its variant Markov-Chain based Time-Delay Patterns, which minimizes the need for full knowledge of neural spiking patterns as well as number of ultrasound charging frequencies. Simulation results exhibit a drop for the stimulation ratio of ~25% and more stable trend in its efficiency ratio (standard deviation of ~0.5%) for the Markov-Chain based Time-Delay Patterns protocol compared to the baseline Change and Fire. The results show the feasibility of utilizing WiOptND for longterm implants in the brain, and a new direction towards precise stimulation of neurons in the cortical microcolumn of the brain cortex.

Keywords

  • Nanobioscience, Neurons, Protocols, Transceivers, Ultrasonic imaging, Wireless communication

Publication forum classification