TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

A convolutional neural network approach for acoustic scene classification

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2017 International Joint Conference on Neural Networks, IJCNN 2017
KustantajaIEEE
Sivut1547-1554
Sivumäärä8
ISBN (elektroninen)9781509061815
DOI - pysyväislinkit
TilaJulkaistu - 30 kesäkuuta 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaINTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

Nimi
ISSN (elektroninen)2161-4407

Conference

ConferenceINTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS
Ajanjakso1/01/00 → …

Tiivistelmä

This paper presents a novel application of convolutional neural networks (CNNs) for the task of acoustic scene classification (ASC). We here propose the use of a CNN trained to classify short sequences of audio, represented by their log-mel spectrogram. We also introduce a training method that can be used under particular circumstances in order to make full use of small datasets. The proposed system is tested and evaluated on three different ASC datasets and compared to other state-of-the-art systems which competed in the 'Detection and Classification of Acoustic Scenes and Events' (DCASE) challenges held in 20161 and 2013. The best accuracy scores obtained by our system on the DCASE 2016 datasets are 79.0% (development) and 86.2% (evaluation), which constitute a 6.4% and 9% improvements with respect to the baseline system. Finally, when tested on the DCASE 2013 evaluation dataset, the proposed system manages to reach a 77.0% accuracy, improving by 1% the challenge winner's score.

!!ASJC Scopus subject areas

Julkaisufoorumi-taso

Latausten tilastot

Ei tietoja saatavilla