A review of approximate methods for kernel-based Big Media Data Analysis
Tutkimustuotos › › vertaisarvioitu
Yksityiskohdat
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2016 24th European Signal Processing Conference (EUSIPCO) |
Kustantaja | IEEE |
Sivut | 1113-1117 |
Sivumäärä | 5 |
ISBN (elektroninen) | 978-0-9928-6265-7 |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | EUROPEAN SIGNAL PROCESSING CONFERENCE - Kesto: 1 tammikuuta 1900 → … |
Julkaisusarja
Nimi | |
---|---|
ISSN (elektroninen) | 2076-1465 |
Conference
Conference | EUROPEAN SIGNAL PROCESSING CONFERENCE |
---|---|
Ajanjakso | 1/01/00 → … |
Tiivistelmä
With the increasing size of today’s image and video data sets, standard pattern recognition approaches, like kernel based learning, need to face new challenges. Kernel-based methods require the storage and manipulation of the kernel matrix, having dimensions equal to the number of training samples. When the data set cardinality becomes large, the application of kernel methods becomes intractable. Approximate kernel-based learning approaches have been proposed in order to reduce the time and space complexities of kernel methods, while achieving satisfactory performance. In this paper, we provide a overview of such approximate kernel-based learning approaches finding application in media data analysis.