TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

An active learning method using clustering and committee-based sample selection for sound event classification

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko16th International Workshop on Acoustic Signal Enhancement, IWAENC 2018
KustantajaIEEE
Sivut116-120
Sivumäärä5
ISBN (elektroninen)9781538681510
DOI - pysyväislinkit
TilaJulkaistu - 2 marraskuuta 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Workshop on Acoustic Signal Enhancement - Tokyo, Japani
Kesto: 17 syyskuuta 201820 syyskuuta 2018

Conference

ConferenceInternational Workshop on Acoustic Signal Enhancement
MaaJapani
KaupunkiTokyo
Ajanjakso17/09/1820/09/18

Tiivistelmä

This paper proposes an active learning method to control a labeling process for efficient annotation of acoustic training material, which is used for training sound event classifiers. The proposed method performs K-medoids clustering over an initially unlabeled dataset, and medoids as local representatives, are presented to an annotator for manual annotation. The annotated label on a medoid propagates to other samples in its cluster for label prediction. After annotating the medoids, the annotation continues to the unexamined sounds with mismatched prediction results from two classifiers, a nearest-neighbor classifier and a model-based classifier, both trained with annotated data. The annotation on the segments with mismatched predictions are ordered by the distance to the nearest annotated sample, farthest first. The evaluation is made on a public environmental sound dataset. The labels obtained through a labeling process controlled by the proposed method are used to train a classifier, using supervised learning. Only 20% of the data needs to be manually annotated with the proposed method, to achieve the accuracy with all the data annotated. In addition, the proposed method clearly outperforms other active learning algorithms proposed for sound event classification through all the experiments, simulating varying fraction of data that is manually labeled.

Tutkimusalat

Julkaisufoorumi-taso