TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Analyzing Assisted Offloading of Cellular User Sessions onto D2D Links in Unlicensed Bands

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut67-80
Sivumäärä14
JulkaisuIEEE Journal on Selected Areas in Communications
Vuosikerta33
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2015
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

For the past years, the analysts have been predicting a tremendous and continuous increase in mobile traffic, causing much of industry and academia to seek out any and all methods to increase wireless network capacity. In this paper, we investigate one such method, cellular data offloading onto direct connections between proximate user devices, which has been shown to provide significant wireless capacity gains. To do so, we formulate a new system model that couples a cellular network in licensed bands and a device-to-device (D2D) network in unlicensed bands. We propose that devices be continually associated with the cellular base station and use this connectivity to help manage their direct connections in unlicensed spectrum. In particular, we demonstrate that assisted offloading of cellular user sessions onto the D2D links improves the degree of spatial reuse and reduces the impact of interference. In this study, a session is a real-time flow of data from one user to another, which adheres to a Poisson point process (PPP). By contrast to a throughput- or capacity-centric system view, the application of PPP enables formulations where entire user sessions, rather than singular data packets, are arriving at random and leaving the system after being served. The proposed methodology is flexible enough to accommodate practical offloading scenarios, network selection algorithms, quality of service measures, and advanced wireless technologies. In this study, we are primarily interested in evaluating the data session blocking probability in dynamically loaded cellular and D2D networks, but given the importance of energy efficiency for mobile devices, we are also interested in characterizing the energy expenditure of a typical data session in these different networks. First with our advanced analytical methodology and then with our detailed system-level simulator, we evaluate the performance of network-assisted data session offloading from cellular to D2D connections under a variety of conditions. This analysis represents a useful tool in the development of practical offloading schemes and ongoing standardization efforts.