TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Approximate kernel extreme learning machine for large scale data classification

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut210-220
Sivumäärä10
JulkaisuNeurocomputing
Vuosikerta219
Varhainen verkossa julkaisun päivämäärä15 joulukuuta 2016
DOI - pysyväislinkit
TilaJulkaistu - tammikuuta 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

Abstract In this paper, we propose an approximation scheme of the Kernel Extreme Learning Machine algorithm for Single-hidden Layer Feedforward Neural network training that can be used for large scale classification problems. The Approximate Kernel Extreme Learning Machine is able to scale well in both computational cost and memory, while achieving good generalization performance. Regularized versions and extensions in order to exploit the total and within-class variance of the training data in the feature space are also proposed. Extensive experimental evaluation in medium-scale and large-scale classification problems denotes that the proposed approach is able to operate extremely fast in both the training and test phases and to provide satisfactory performance, outperforming relating classification schemes.

Tutkimusalat

Julkaisufoorumi-taso