TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Audio-Based Epileptic Seizure Detection

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Otsikko2019 27th European Signal Processing Conference (EUSIPCO)
KustantajaIEEE
Sivumäärä5
ISBN (elektroninen)978-9-0827-9703-9
ISBN (painettu)978-1-5386-7300-3
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEUROPEAN SIGNAL PROCESSING CONFERENCE -
Kesto: 1 tammikuuta 1900 → …

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEUROPEAN SIGNAL PROCESSING CONFERENCE
Ajanjakso1/01/00 → …

Tiivistelmä

This paper investigates automatic epileptic seizure detection from audio recordings using convolutional neural networks. The labeling and analysis of seizure events are necessary in the medical field for patient monitoring, but the manual annotation by expert annotators is time-consuming and extremely monotonous. The proposed method treats all seizure vocalizations as a single target event class, and models the seizure detection problem in terms of detecting the target vs non-target classes. For detection, the method employs a convolutional neural network trained to detect the seizure events in short time segments, based on mel-energies as feature representation. Experiments carried out with different seizure types on 900 hours of audio recordings from 40 patients show that the proposed approach can detect seizures with over 80% accuracy, with a 13% false positive rate and a 22.8% false negative rate.

Tutkimusalat

Julkaisufoorumi-taso