TUTCRIS - Tampereen teknillinen yliopisto

TUTCRIS

Bayesian receiver operating characteristic metric for linear classifiers

Tutkimustuotosvertaisarvioitu

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut52-59
Sivumäärä8
JulkaisuPattern Recognition Letters
Vuosikerta128
DOI - pysyväislinkit
TilaJulkaistu - 1 joulukuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli

Tiivistelmä

We propose a novel classifier accuracy metric: the Bayesian Area Under the Receiver Operating Characteristic Curve (CBAUC). The method estimates the area under the ROC curve and is related to the recently proposed Bayesian Error Estimator. The metric can assess the quality of a classifier using only the training dataset without the need for computationally expensive cross-validation. We derive a closed-form solution of the proposed accuracy metric for any linear binary classifier under the Gaussianity assumption, and study the accuracy of the proposed estimator using simulated and real-world data. These experiments confirm that the closed-form CBAUC is both faster and more accurate than conventional AUC estimators.